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Calculul notei la Proiectare Logica 
 Nota in catalog: 
 =ROUND(0.3*Partial+0.3*NotaLab+0.4*Examen,2) 
adica  
 30% Partial; (se sustine in intervalul de timp alocat unui curs 
pe la mijlocul semestrului) NU ESTE OBLIGATORIE sustinerea sa. 
 30% Colocviu laborator [>=5] 
   Nota jurnal de laborator minus  (–)  o corectie de max 
3p la temele curs si lab trimise   in format electronic) 
 40% Examen [>=5] Daca partialul nu s-a dat acesta se va da pe 
subiect separat in cadrul examenului. 
 Prezenta la laborator obligatorie: 

• 1 lab lipsa nu afecteaza nota la colocviu 
• 2 lab lipsa se scad 2 p din nota de colocviu 
• 3 lab lipsa se scad 4p din nota la colocviu 
• 4 lab lipsa se repeta laboratorul in anul urmator 

 Prezenta la curs nu este obligatorie dar se contorizeaza. Afecteaza 
nota finala (in minus) cu maxim 0.5 p. 
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Baze de numeratie 

Reprezentarea araba a numerelor 

Baza 10: 

• 213.4610=2∙102+1∙101+3∙100+4∙10-1+6∙10-2 

 

𝑁10 = 𝑎𝑛10
𝑛 + 𝑎𝑛−110

𝑛−1 + ⋯+ 𝑎010
0

+ a−110
−1 + ⋯+ 𝑎−𝑚10−𝑚 

Baza b: 
𝑁𝑏 = 𝑎𝑛𝑏

𝑛 + 𝑎𝑛−1𝑏
𝑛−1 + ⋯+ 𝑎0𝑏

0 + a−1b
−1

+ ⋯+ 𝑎−𝑚𝑏−𝑚 

 

4 



Schimbarea bazei de numeratie 

Numere intregi: 
Deimpartit=Impartitor* Cat +Rest:  𝑫 = 𝑰 ∗ 𝑪 + 𝑹 
Baza 10: 

• 21310 = 2 ∙ 102 + 1 ∙ 101 + 3 
21310

10
= 2 ∙ 101 + 1 +

3

10
 

ultima cifra a unui numar in baza 10 este restul 
impartirii acestui numar la 10 

2110

10
= 2 +

1

10
 

A doua cifra se obtine calculand restul impartirii la 
10 a catului obtinut anterior 
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Schimbarea bazei de numeratie (2) 

numere intregi: 

Deimpartit=Impartitor* Cat +Rest:  𝑫 = 𝑰 ∗ 𝑪 + 𝑹 

Numar 
(Cat anterior) 

Impartitor 
(baza) 

Rest 

213 10 3 

21 10 1 

2 10 2 

Least Significant Digit  : LSD  

Most Significat Digit : MSD 

Cifra cea mai putin  
semnificativa 

Cifra  
cea mai semnificativa 
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Schimbarea bazei de numeratie (3) 

Numere intregi: 

 

 

 

 

 

 

 

 

 
21310 = 110101012 

Numar 
(Cat anterior) 

Impartitor 
(baza) 

Rest 

213 2 1 

106 2 0 

53 2 1 

26 2 0 

13 2 1 

6 2 0 

3 2 1 

1 2 1 

LSB 

MSB 
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Schimbarea bazei de numeratie (4) 
Numere fractionare: Baza 2 

 

 

 

 

 

 

 

 

 

 
0.40310 = 0.01100111…2 

Numar 
(Cat 

anterior) 

Partea 
intreaga 

0.403 - 

0.403*2=0.806 0 

0.806*2=1.612 1 

0.612*2=1.224 1 

0.224*2=0.448 0 

0.448*2=0.896 0 

0.896*2=1.792 1 

0.792*2=1.584 1 

0.584*2=1.168 1 

MSD 

LSD 
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2-n Aprox 

- 

0*1/2 0.5 0 

1*1/4 0.25 0.25 

1*1/8 0.125 0.375 

0*1/16 0.0625 0.375 

0*1/32 0.03125 0.375 

1*1/64 0.015625 0.390625 

1*1/128 0.0078125 0.3984375 

1*1/256 0.00390625 0.40234375 



Schimbarea bazei de numeratie (5) 

Numere fractionare: 
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Bazele de numeratie 2, 8 si 16 

In bazele de numeratie mai mari ca 10 se folosesc 
litere pentru desemnarea cifrelor mai mari de 10. 
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Conversii binar <-->octal si invers 
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Conversii binar <--> hexazecimal 

In bazele de numeratie mai mari ca 10 se folosesc 
litere pentru desemnarea cifrelor mai mari de 10. 
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Adunarea Binara 

  

Suma 

Biti depasire 
(de transport) 

Carry bits) 
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Scaderea Binara – rezultat pozitiv 

  

Diferenta 

Biti de imprumut 

14 



Scaderea Binara – rezultat negativ 

 Daca apare bit de imprumut la cel mai semnificativ 
bit  rezultatul este negativ. 

Diferenta 

Biti de imprumut 
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Intregi cu semn 

Prin conventie s-a ales ca cel mai remnificativ bit 
(MSB – Most Significat Bit) sa reprezinte semnul: 
0  + si 1  − 

• −2310=100101112 +2310=000101112 

•  −010=100000002  +010=000000002 

In acesta conventie, un registru de 8 biti, ar putea 
reprezenta numerele intre -127 si +127, cu 
deficienta ca exista 2 reprezentari ale numarului 0 
(zero) 
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Conceptul de registru 

In aplicatiile practice, de exemplu in calculatoare, 
avem limitari privind numarul de cifre alocate 
pentru un numar. 

De exemplu, putem alege sa reprezentam numere 
in baza 10 pe un spatiu ce poate memora MAXIM 
4 cifre zecimale.  

Acest spatiu format din 4 locuri pentru cifrele din 
baza 10 reprezinta un registru de 4 cifre zecimale. 
Putem memora in acest registru numere intre 
0000 si 9999. Numarul 3956 poate fi reprezentat 
in registru:  
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Complementul aritmetic 1 

 A fost introdus pentru reducerea numarului de operatii ce 
trebuiesc implementate intr-o unitate de calcul.  

 Scop initial: transformare operatiei de scadere intr-o 
operatie de adunare folosind registrii de memorare cu 
numar fix de cifre. 

 

De exemplu dorim sa facem operatia 17-13 = 4 folosind 
registrii de 2 cifre in baza 10. Vrem sa facem 17+C(13)=104 

 

 

 

7+B=14 B=7           1 este cifra de transport 

1 +A+1 =10 A=8. Prin urmare C(13)=87 
18 

1 7 + 

A B C(13) 

1 0 4 



Complementul aritmetic 2 

 numarul care adunat cu 17 da rezultatul corect pe ultimele 2 
cifre, cu pretul aparitiei unei cifre de transport este 
complementul aritmetic. Dorim sa efectuam 17-13=4 si facem 
17+87=104 

 Complementul aritmetic al unui numar este acel numar care 
adunat cu primul da rezultatul corect la care s-ar adauga, 
eventual, o cifra unu, pe pozitia cea mai semnificativa, daca 
rezultatul s-ar memora pe un registru cu o cifra in plus (adica 3 
cifre in loc de 2). 

 
Adica 17+C(13)=4+100=104C(13)=104-17=87. 
Observam ca 13+C(13)=13+87=100C(13)=100-13 
 
Pe registrii de 3 cifre C(13)=1000-13=987. Intr-adevar 
987+17=1004trunchiat la 3 cifre da rezultatul corect. 
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Complementul aritmetic 3 

In baza 10:  
Complementul fata de 9(10-1) pe un registru de 4 cifre. 

8694 numar initial 

1305 complementul fata de 9 (suma tuturor cifrelor 
face 9: cel mai mare numar din 4 cifre din baza 10) 

Complement fata de 10 

Se obtine din complementul fata de 9 la care se 
adauga o unitate. 

Dorim sa calculam pe reg. de 3 cifre: 127-95=32;  

C(95)=904+1=905;905+127=1032Trunchiat la 3 cifre   
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Complementul aritmetic 3 

In fiecare baza de numeratie exista 2 
complementi:  
• Complementul fata de cea mai mare cifra (De ex. fata 

de 9 in baza 10) dintre cifrele 0,1,...,9 

• Complementul fata de baza de numeratie (De ex. fata 
de 10 in baza 10 

 

In baza 2 vor exista 2 complementi: 
• Complementul fata de 1 si 

• Complementul fata de 2. 

Ce complementi vor exista in baza 16? 
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Complementii aritmetici in baza 2 

Complementul fata de 1 inseamna inversarea bitilor 
(0 <--> 1) 

• Ex: C1(1010) =  0101, in cazul unui registru de 4 biti 

 

 Complementul fata de 2 

• Prima metoda: C2(1010)=C1(1010)+1=0110 

• A 2-a metoda: a) se pastreaza bitii de la dreapta celui mai 
putin semnificativ bit =1 si b) se inverseaza ceilalti.  

o Ex.1. 10100110 

o Ex.2. 01001100 

o Ex.3. 101000011000 
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Reprezentarea binara a numerelor 
negative folosind C2 

 Reprezentarea numerelor negative o constituie complementul 
fata de 2 a numarului pozitiv corespunzator. 
• De ex. folosind registrii de 8 biti 1910=000100112 

• -1910=C2(19)=111011012 

• Verificare:  
 00010011+    +19 

 11101101     −19 

100000000       0 

• Bitul de semn al numerelor negative este 1 

 In acesta reprezentare, un registru cu 8 biti poate memora 
numere intregi intre −128 si +127. Intr-adevar 
−12810=100000002; +12710 =011111112 ; −110= 111111112 . 
Verificarea se face prin adunarea:  
• 100000002+    −12810 
011111112     +12710 
111111112       -110 
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Validitatea Complementului fata de 2 
 Complementele fata de 2 si 1 ale numarului 𝑋, se mai 

noteaza cu 𝑋 2 si respectiv 𝑋 1 (notat uneori si cu 𝑋 ).  

 Daca ne referim la registrii pe n biti, din cele prezentate 
anterior rezulta ca: 

𝑿 𝟐 = 𝟐𝒏 − 𝑿 si 𝑿 𝟏 + 𝟏 = 𝑿 𝟐. 

Prin urmare daca dorim sa facem diferenta 𝑌 − 𝑋 atunci 
calculam 𝒀 + 𝑿 𝟐 − 𝟐𝒏. 

Stim ca 𝑋 − 𝑋 = 0. Intr-o reprezentare pe n biti 

0 = 𝑋 − 𝑋 = 𝑋 + 𝑋 2 − 2𝑛 = 𝑋 + 𝑋 1 + 1 − 2𝑛 = 𝑋 +
𝑋 + 1 − 2𝑛. 

Prin urmare ar trebui ca 𝑋 + 𝑋 + 1 = 2𝑛.  

 

Caz particular: 

 
24 



Reprezentare in C2 
 Pe un registru de 4 biti  avem in aceasta 
reprezentare urmatoarele numere binare: 
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Nr zecimal  Nr. binar in C2 Nr zecimal  Nr. binar in C2 

-1 1111 7 0111 

-2 1110 6 0110 

-3 1101 5 0101 

-4 1100 4 0100 

-5 1011 3 0011 

-6 1010 2 0010 

-7 1001 1 0001 

-8 1000 0 0000 



Reprezentarea Offset Binary 
 La convertoarele Analog digitale mai intalnim si 
aceata reprezentarea Offset Binary  (OB): 
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Nr zecimal  Nr. binar in OB Nr zecimal  Nr. binar in OB 

7 1111 -1 0111 

6 1110 -2 0110 

5 1101 -3 0101 

4 1100 -4 0100 

3 1011 -5 0011 

2 1010 -6 0010 

1 1001 -7 0001 

0 1000 -8 0000 



Formula Pentru Offset Binary 

Pe un registru de n biti  

OB(X,n)=uint(X,n) +uint(2n-1,n) 

Exemplu numarul 120 pe un registru 
de 8 biti:  

OB(120,8)=0111 10002+0111 11112 

=1111 01112 
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Inmultirea numerelor intregi in binar 

Inmultirea numerelor intregi pozitive in 
reprezentare binara este analoga inmultirii in baza 
10. 
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Reprezentari binare pentru 
numerele zecimale 

Exista mai multe reprezentari binare pentru cifrele 
zecimale (0-9).  

NBCD –Naturally Binary Coded Decimal 
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