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În cercul de rază R  cad electronii ale căror viteze traversează zonele hașurate ale semisferei 

ce îmbracă mulțimea vectorilor viteză inițială a electronilor distribuiți izotrop, presupuși a fi în 

număr de N  . 

Densitatea superficială a vectorilor  0
1,

i
v i N  pe suprafața sferei din ”spațiul vitezelor” 

este dată de: 
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0
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v
 , unde 
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0
2 v  este aria semisferei din acest spațiu.  

Cunoscând ariile celor 2 zone hașurate putem afla câți electroni trec prin ele, aceștia 

împrăștiindu-se în cecul de rază R  din jurul grăunciorului, numărul lor fiind fN  . Pentru 

aceasta trebuie determinate unghiurile de lansare pentru electronii a căror bătaie este R .   
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Soluțiile din cadranul I sunt: 
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Cei fN  electroni ce traversează această arie sunt dați de: 
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Din legea lui Einstein a efectului fotoelectric obținem: 
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Electronii care ies perpendicular pe armătură străbat spațiul 
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Pentru a reveni trebuie ca d s  . 
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În stare de repaus: 
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După ciocnire vor avea viteza v față de S. 
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Obținem: 
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Pe de altă parte: 
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De unde rezultă: 
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