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XII 
Proba Teoretică 

Barem 
 

Subiect 1 Parţial Punctaj 
Barem subiect 1  10 
Sarcina de lucru 1  4,50 

a)  

Deoarece incidenţa este normală, planul fantei va coincide cu o suprafaţă de undă a 

undei incidente plane. Punctele suprafeţei de undă din planul fantei devin, în acord cu 

principiul Huygens - Fresnel, surse de unde 

secundare sferice, coerente şi în fază. Împărţind 

aria fantei în fâşii cu lăţimea foarte mică, toate 

având aceeaşi arie, atunci fiecare fâşie poate fi 

considerată ca o sursă de unde secundare, fazele, 

frecvenţa şi amplitudinile lor 0a  fiind egale. 

Pentru razele difractate de marginile fantei (Fig. 

1), sub acelaşi unghi   faţă de normala la 

paravan, diferenţa de drum optic este 

sina  , 

iar diferenţa de fază 

2
sink a


  


  . 

Pentru razele difractate pe direcţia fasciculului incident, amplitudinea rezultantă este 

0 0A Na , unde N  este numărul de surse secundare. 

Pentru razele difractate sub unghiul   faţă de normala la paravan, 

amplitudinea rezultantă este dată de diagrama fazorială din Fig. 2, 

unde lanţul de fazori corespunzând undelor emise de fiecare sursă 

secundară se transformă dintr-un contur poligonal într-un arc de 

cerc, care subîntinde un unghi la centrul cercului egal cu  . 

Prin urmare: 

2 sin
2

A R


 , 

iar 

0 0Na A
R

 
  , 

aşa încât 

0

sin
2

2

A A




 . 
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Barem 
În concluzie 

2

0

sin
2

2

I I





 
 

  
 
 

. 

Maximul central (v. Fig. 3) se obţine pentru 

0   şi are valoarea 0I I , în timp ce 

minimele ( min 0I  ) se obţin pentru 

sin 0
2


 , adică pentru *2 ,  m m m   , deoarece pentru 0m   se obţine 

maximul central. Ţinând cont de expresia pentru diferenţa de fază, condiţia de 

formare a minimelor devine 

sin ma m  . 

Observaţii: 

 Maximele secundare, mărginite de două minime vecine, au lăţimea / a , iar 

maximul central are lăţimea dublă, 2 / a ; 

 Cu cât a  scade, lăţimea maximului central creşte, astfel încât pentru a  , 

1
2


  , adică maximul central se va întinde pe tot ecranul. 
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b) Admiţând că maximele secundare sunt simetrice, ele se realizează pentru 

1
sin

2
ma m 

 
  
 

, 

de unde 

 max 2 1m   , 

ceea ce înseamnă că intensitatea lor relativă va fi 

 

2

0

2

2 1

mI

I m 

 
    

. 

În concluzie, 1

2

0

4
0,045

9

I

I 
  , 2

2

0

4
0,016

25

I

I 
   şi 3

2

0

4
0,008

49

I

I 
  . 

Intensitatea relativă a maximului central este 

 

2

0 0

22

0 22 2
1 1 1

0

1 1 1 2

4 1 3 84
1 1 1

82 11

tot
m m

m m m

I I

I
I I I

m

I





 

  

  

    
 

    
  

  

. 

Numeric, 0 91,35%.
tot

I

I
  
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c) Lărgimea imaginii fantei este 

12 2 10,1 mm 1 cmy a L a L
a


       , 

iar lungimea ei 

12 ' 2 1,01 cm 1 cm.x l L l L
l


        

 
 

2x0,25 
 
 

0,25 
 

0,75 

Sarcina de lucru 2  4,50 

a)  

Figurile de difracţie produse de fiecare fantă se suprapun, dar, în plus, fasciculele 

difractate de fiecare fantă interferă. Prin urmare, dacă distanţa dintre centrele celor 

două fante este d a b  , atunci diferenţa de fază dintre undele coerente care 

provin de la cele două fante este 

2
sind dk d


  


  , 

unde   este unghiul de difracţie. Deoarece intensitatea fiecăreia dintre cele două 

unde care interferă este cea dată de difracţia pe o fantă 
2

0

sin
2

2

a

a
a

I I





 
 

  
 
 

, 

atunci intensitatea totală a undelor care interferă este 

  22 cos 2 1 cos 4 cos .
2

d
d a a a a d a d aI I I I I I I


         

Prin urmare, figura de interferenţă va fi 

modulată de figura de difracţie (Fig. 3). 

Maximele de interferenţă se obţin pentru 

cos 1,
2

d    adică 2d m  , de unde 

rezultă că  

sin md m  , 

care este tocmai condiţia cerută. 

 
 
 
 
 
 

0,25 
 
 
 
 
 

0,25 
 
 
 
 

0,25 
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1,00 

b) Maximele de interferenţă care pot fi observate sunt cele care nu se suprapun 

peste minimele de difracţie. Din condiţia pentru obţinerea maximelor de 

interferenţă sin md m   şi cea pentru obţinerea minimelor de difracţie 

sin 'ma m  , rezultă că 

' 16 ',  ' 1,  2...
d

m m m m
a

     . 
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Aşadar dispar maximele de interferenţă de ordinele 16,  32, 48    etc. 

În concluzie, în interiorul maximului principal de difracţie se formează, împreună cu 

maximul de ordin zero de interferenţă, un număr de maxime egal cu 

 2 1 1 2 1 2 16 1 31
d d

a a

    
           

    
, 

iar în interiorul maximelor secundare de difracţie, care au lărgimea egală cu jumătatea 

lărgimii maximului principal, se formează un număr de 15 maxime de interferenţă egal 

cu 

1 16 1 15
d

a

 
    

 
. 
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0,25 

c)  

Din condiţia de maxim de interferenţă, sin md m   şi de minim de difracţie, 

sin 'ma m  , rezultă că numărul teoretic de maxime de interferenţă este: 

max2 1 2 1 6401
d

m


 
    

 
. 

Cu toate acestea, deoarece dispare un număr de maxime egal cu numărul total al 

minimelor nule de difracţie 

max2 ' 2 400
a

m


 
  

 
, 

atunci numărul de maxime de interferenţă care se pot observa este 
'

max max2 1 2 6001m m   . 

În condiţiile de mai sus, dacă toate aceste maxime ar fi observabile, numărul de 

maxime secundare de difracţie observabile ar fi 
6001 31

398
15


 , adică câte 199 de o 

parte şi de alta a maximului central. 

Numărul de maxime de interferenţă care se observă experimental este egal cu 

31 4 15 91   . 
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1,25 

d)  

Dacă s  este distanţa dintre două maxime de interferenţă vecine, măsurată pe un 

ecran plasat în planul focal imagine al lentilei, atunci condiţia de observabilitate a 

acestora este 

mins f s   , 

unde mins  este distanţa minimă dintre două puncte vecine de pe ecran care pot fi 

observate ca fiind distincte, atunci când se află la distanţa   de ochi: 
5

min min 7,5 10  m.s        
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Barem 
Distanţa unghiulară   dintre două maxime vecine rezultă din scrierea condiţiilor 

pentru maximele de interferenţă 

   
,

1

m

m

d m

d m

 

  

 


    
 

de unde 

43,125 10 .
d


      

Prin urmare 

min 24 cm.
d

f



   
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Problemă propusă de 

Conf. univ. dr. Sebastian POPESCU, Universitatea „Alexandru Ioan Cuza” din Iaşi 
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Barem Subiectul 2 

 

 

Subiect 2. Fotoni...”ciudaţi” Parţial Punctaj 
1. Barem subiect 2  10 

 

 
a. Conform fig.1, spre B fotonii pleacă 

mai târziu decât spre A cu 1

d
dt




  şi 

“zboară” până la B cu 2dt  în  plus faţă de 

cei spre A, 2

dl
dt

c
  . Deci spotul apare în 

B după 1 2dt dt dt    faţă de cel din A. 

Aşadar, viteza de deplasare a spotului din A 

în B este v
dx

dt
  

Din 
2

sin

cos cos

D
l dl D d




 
        şi        2 2

sin

cos

D
dt d

c





  

Deci    
2

sin

cos

d D
dt d

c

 


 
   

Din 
2cos

x D
tg x Dtg dx d

D
  


      . Prin urmare 

2

2

cosv
sin

cos

D
d

dx

d Ddt
d

c




 


 

 



    , adică       
2

v

cos sin

D

D

c




 





 

1 

3 

Graficul are aspectul din fig.2 

fig.2 

0,5 

Prin 0  trece asimptota verticală pentru care se anulează numitorul 

2

0sin 1
2 2

D D

c c

 


 
   

 
 

 

0,25 
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Barem Subiectul 2 

Curba (1) se obţine dacă 2D c   şi curba (2) dacă 2D c    0,25 

Deoarece în timp ce   ia valori de la / 2  la / 2  , viteza spotului ia valori 

negative şi pozitive, înseamnă că spotul se poate mişca în ambele sensuri pe perete. 

Pentru a evita efectele remanenţei imaginii pe retină, trebuie ca viteza unghiulară să 

nu fie prea mare, şi atunci se poate observa cum spotul se mişcă şi spre stânga şi spre 

dreapta pe perete (un fel de dedublare a fasciculului). 

0,5 

Fenomenul se poate vedea însă numai pentru distanţe D suficient de mari (de ordinul 

miilor de kilometri). Dacă D c   se obţine 
2

v( )
cos

D



  , ca şi cum fasciculul 

laser ar putea avea viteza infinită. 

0,25 

Viteza spotului poate depăşi valoarea c. Aceasta însă nu contrazice TRR, pentru că 

cu ajutorul lui nu se poate transmite o informaţie sau un semnal dintr-un punct al 

planului peretelui în altul. 

0,25 

b.i)Vom considera o ciocnire elastică între foton şi oglindă şi vom aplica pe baza 

diagramei din figura alăturată, legile de conservare ale energiei şi 

impulsului. 

 

 
22

cos v cos v v
'

sin sin
'

v vv

2 ' 2

x

x

h h
M M

h h

Mhc M hc

 
 

 
 

 


     






  
   


  

0,5 

4 

Ecuaţiile 1 şi 3 pot fi aduse la forma: 

 
2

v cos cos
'

v
v v

' 2

x

x

x

h h
M

Mhc hc
M

M

 
 

 

  


   

 

Având în vedere că M   (oglindă grea), se obţine 
vcos

'
vcos

c

c


 







  (*) 

0,5 

iar din ecuaţia 2 din sistem, 
 sin vcos

sin
vcos

c

c

 








  0,25 

Această ecuaţie duce, după ridicarea ei la pătrat şi efectuarea calculelor 

corespunzătoare, la o ecuaţie de gradul al doilea în coscare are două soluţii: 

Soluţia I: 

2

2

2

2

v v
2 1 cos

cos
v v

1 2 cos

c c

c c







 
   

 

 

 , care reprezintă legea reflexiei în acest caz. 
0,5 
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şi Soluţia II: 

2
2

2

2 2

2

v v
2 cos 1 cos

cos
v v

1 2 cos

c c

c c

 





 
  
 

 

 , de unde rezultă uşor că 2     . 

Aceasta ar însemna că fotonul trece dincolo de oglindă, ceea ce nu poate avea loc. 

 
 

0,25 
 

0,25 

ii) În cazul în care viteza oglinzii face un unghi  cu normala, se înlocuieşte doar v cu 

vcos şi se obţine: 
2

2

2

2
2

2

vcos v
2 1 cos cos

cos
v v

1 cos 2 cos cos

c c

c c


 



  

 
   

 

 

 
0,25 

Analizând soluţia I, se poate observa că pentru v > 0, există un interval de valori 

pentru , pentru care  este mai mare decât 90˚. Acest fenomen este cunoscut sub 

numele de „reflexie înainte” şi începe la un unghi critic  care rezultă din formula 

dedusă pentru 90    

0,25 

2

2

v
2

cos
v

1
critic

c

c

 



. Fenomenul încetează dacă 
max

v
cos

c
   , adică componenta vitezei 

fotonului pe direcţia mişcării oglinzii este egală cu viteza oglinzii. 

0,25 

Lungimea de undă a fotonului reflectat se află revenind la formula (*) unde înlocuim 

soluţia I şi după câteva calcule se ajunge la: 
2

2

2

2

v
1

'
v v

1 2 cos

c

c c

 







 

  , respectiv        

2
2

2

2
2

2

v
1 cos

'
v v

1 cos 2 cos cos

c

c c


 

  





 

 
0,5 

Din formula pentru lungimea de undă a fotonului reflectat, obţinută mai sus, se obţine 

imediat că ' 3   . Dacă spectrul vizibil este cuprins aproximativ între 400 nm şi 

800 nm, atunci lumina reflectată va fi în întregime în infraroşu. Deci în condiţiile 

date, Einstein nu-şi poate vedea chipul. 

0,5 

c. Unghiul de deviaţie este adimensional. Evident, el trebuie să depindă de masa 

Soarelui, de distanţa minimă faţă de Soare şi de constanta atracţiei universale. Numai 

cu acestea nu sepoate obţine o mărime adimensională, deci introducem şi viteza 

luminii, c. 

Obţinem: 1SSI
M r k c        

3

2
1

L L
M L

M T T

 
 

  
   

3 2 1L M T              

0,25 

2 

Rezultă sistemul:

3 0

0

2 0

  

 

 

  


 
  

   cu soluţiile     ,      şi 2     
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1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv. 
2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu 

conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la 
rezultat, prin metoda aleasă de elev. 

 

XII 
Proba Teoretică 

Barem Subiectul 2 

Deci cele patru mărimi formează o combinaţie adimensională dacă sunt grupate ca un 

raport de forma: 
2

skM

rc


 
 
 

 . Deci unghiul de deviere poate fi o funcţie de forma 

2

skM
A f

rc




  

       
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Cea mai simplă dependenţă este 
2

SkM
A

rc
    

Constanta A nu poate fi determinată prin analiză dimensională. Din TRG rezultă 

valoarea 4. Iar din gravitaţia newtoniană, 2. Noi vom alege 1. 

0,25 

Calculul numeric dă: 

11 30
6

8 16

6,67 10 2 10
1 2,117 10 0,4 ''

7 10 9 10
rad


  

   
  

  

 

0,50 

Pentru ca Pămîntul să devină gaură neagră, este rezonabil să presupunem că 

1rad  . Astfel toţi fotonii, ar cădea pe Pământ. 
0,25 

Rezultă: 
11 24

2 16

6,67 10 6 10
4

9 10

pkM
R mm

c

  
  


  

0,50 

Oficiu  1 

 

 

 



 

 

      

  PROBLEMA 3 
 

Barem de notare Parţial Punctaj 

Problema 3  10 

a)   3 p 

Aşa cum indică desenul din figura alăturată, la momentul iniţial, 

,00 t  sursa de lumină trece prin originea O a sistemului de coordonate 

XY şi la momentul t ea este în poziţia  ,S x  unde: 

  .vttxx   

 
Observatorul din A primeşte lumina trimisă de sursă atunci când 

aceasta se afla în poziţia ).(S 00 x  Acestui semnal luminos, ca să ajungă de 

la sursă la observator, parcurgând distanţa: 

,22

0 dx   

îi trebuie timpul: 

.

22

0

c

dx

c





  

După timpul   de la emiterea semnalului luminos, sursa a ajuns în 

poziţia )S(x , parcurgând distanţa: 

,v0  xxx  

astfel încât: 

.
v

22

00

c

dxxx 



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Evident, deoarece  ,txx   din relaţia anterioară rezultă că şi 

 ,00 txx   aceasta fiind coordonata de poziţie a sursei în aprecierea 

observatorului. Într-adevăr, dacă sursa a fost în poziţia  00S x  la 

momentul  t  şi semnalul luminos a avut nevoie de timpul   ca să 

ajungă la observator, atunci, recepţia semnalului la observator s-a făcut la 

momentul t, exact momentul când sursa este în poziţia S. Ca urmare, 

coordonata de poziţie 0x  este apreciată de observator la momentul t, astfel 

 

 

 

 

 

 

 

 

 

XII 

  

x  

O  

A  

d  

 tx  

v


 

S  

 tx0  

0S  
X  

Y  



încât, pentru observator,   :00 txx   

;
v

v
22

00

c

dxxt 



 

    ;0vv2v- 2222

0

22

0

22  dctxtcxc  

 
   

;
v

vvvv
22

2222224222

0





c

dctccttc
tx  

 
 

,
v

vv
v

22

2222222

0





c

cdtctc
tx  

ceea ce evidenţiază o mişcare neuniformă  apreciată de observator pentru 

sursa de lumină. 
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Pentru calculul vitezei instantanee şi a acceleraţiei instantanee ale 

sursei apreciate de observator, utilizând noţiuni cunoscute din analiza 

matematică, rezultă: 

 
;

vv

v
1

v

v

d

d

222222

2

22

2
0





















cdtc

t

c

c

t

x
w  

  
,0

vv

v

d

d
2/3222222

223





cdtc

dc

t

w
a  

ceea ce dovedeşte caracterul încetinit al mişcării sursei, apreciată de 

observator. 

Evident, pentru ,0t  se obţine valoarea maximă a aceleraţiei 

apreciată de observator pentru mişcarea sursei de lumină: 

 
.

v
1

v

v

v
2/3

2

23

2/3223

223

max
















ccdcd

dc
a  
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b)  2 p 

Dacă la momentul 0t  

obiectul luminos trece prin punctul 

cel mai apropiat de observator, 

punctul A, aşa cum indică desenul 

din figura alăturată şi dacă la 

momentul oarecare, ,0  obiectul 

luminos a ajuns în punctual B, 

parcurgând distanţa: 

,tanv0  hx   

atunci observatorul din O va afla de 

trecerea obiectului luminos prin 

punctual B la ora t : 

.
cos

cos







c

h

c

h

c

D
t   
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 Viteza obiectului luminos, v, înregistrată de observatorul din O la 

ora ,t  corespunzătoare momentului ,  atunci când obiectul trece prin 

punctul B, va fi: 

;

d

d

1
v

d

d

d

d

d

d
v 0





 tt

x

t

x
   

 

 

 

 

 

 

 

 

 

D  
h  

O  

B  A  

v


 

  



;
cosd

d

d

d













 c

ht
  ;   

;
d

d

cos

sin
1

cos

1

d

d
1

d

d
2 







 c

h

c

ht









  

,tanv0  hx   

  ;
cos

dcossindsincos

cos

sin
dtanddvd

20



















 hhhx  

;dcosdsin    ;dsindcos    

;
cos

d
dv

20



 h  

;cos
v

d

d 20 




h
  

;sin
v

1
d

d 0 
 c

t
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;

d

d

1
vv 0



t
  

.

sin
v

1

v
v

0

0


c



  

Observatorul din O vede obiectul luminos trecând prin punctul B, 

mai târziu decât momentul când s-a întâmplat această trecere, din cauza 

valorii finite a vitezei de propagare a luminii. 
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c)  4 p 

Un jet incandescent relativist pleacă din centrul unui nucleu 

galactic activ, deplasându-se pe direcția AB, cu viteza v așa cum indică 

desenul din figura alăturată. Să admitem că la momentul 1t  o rază de 

lumină părăsește jetul în punctul A și o altă rază de lumină părăsește jetul 

la momentul 2t  în punctul B, astfel încât: 

 

;12 ttt   

.vAB tr   
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Observatorul din punctul O nu poate aprecia mișcarea reală a 

jetului. El apreciază mișcarea aparentă a jetului, în proiecție pe sfera 

cerească, de-a lungul arcului de cerc CB. 

Dacă unghiul   este foarte mic, atunci  AC,BC   astfel încât: 

;sinvsinABBC   t  

;cosvcosABAC   t  

;BC  D  

 sinvBC t .CBD  

La observatorul din punctul O, cele două semnale luminoase ajung 

la momentele 1  și respectiv ,2  astfel încât: 

;
cosvCOACAO

1111
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Observatorul nu poate aprecia mișcarea reală a jetului. În proiecție 

pe sfera cerească, observatorul apreciază mișcarea aparentă a jetului pe 

direcția BC, cu viteza transversală: 

 
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astfel încât, impunând condiția de maxim pentru această funcție, rezultă: 
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     ;sincos1cos1cos
22

   
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astfel încât: 
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2

2
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c


 ;6,3v maxap, c  ,96,0v c  

reprezentând viteza reală a jetului incandescent relativist. 
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