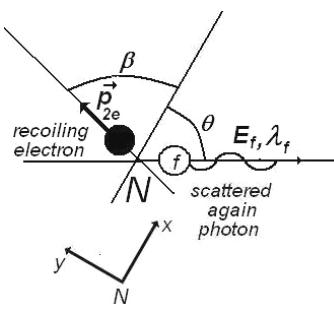


MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION IV


Part	MARKING SCHEME - THE THEORETICAL QUESTION IV- COMPTON SCATTERING	Total Scores
IV.	<p>For: the situation before the first scattering of photon</p> <p>the momentum \vec{p}_i and the energy E_i of the initial photon</p> $\left\{ \begin{array}{l} \vec{P}_i = \frac{h}{\lambda_i} = \frac{h \cdot f_i}{c} \\ E_i = h \cdot f_i \end{array} \right.$ <p>the frequency of initial photon $f_i = \frac{c}{\lambda_i}$</p> <p>the momentum \vec{p}_{0e} and the energy E_{0e} of initial, free electron in motion</p> $\left\{ \begin{array}{l} \vec{P}_{0e} = m \cdot \vec{v}_{1e} = \frac{m_0 \cdot \vec{v}_{1e}}{\sqrt{1 - \beta^2}} \\ E_{0e} = m \cdot c^2 = \frac{m_0 \cdot c^2}{\sqrt{1 - \beta^2}} \end{array} \right.$ <p>De Broglie wavelength of the first electron $\lambda_{0e} = \frac{h}{p_{0e}} = \frac{h}{m_0 \cdot v_{1e}} \sqrt{1 - \beta^2}$</p> <p>the situation after the scattering of photon</p> <p>the momentum \vec{p}_0 and the energy E_0 of the scattered photon</p> $\left\{ \begin{array}{l} \vec{P}_0 = \frac{h}{\lambda_0} = \frac{h \cdot f_0}{c} \\ E_0 = h \cdot f_0 \end{array} \right.$ <p>the frequency of scattered photon $f_0 = \frac{c}{\lambda_0}$</p>	7.0 points

the principles of conservation of moments and energy	$\begin{cases} \vec{P}_i + \vec{p}_{oe} = \vec{p}_0 \\ E_i + E_{0e} = E_0 + E_{1e} \end{cases}$	0.3p
the conservation of moment on Ox direction	$\frac{h \cdot f_i}{c} + m \cdot v_{1e} \cdot \cos \alpha = \frac{h \cdot f_0}{c} \cos \theta$	0.3p
the conservation of moment on Oy	$m \cdot v_{1e} \cdot \sin \alpha = \frac{h \cdot f_0}{c} \sin \theta$	0.3p
$\frac{m_0^2 \cdot c^2}{1 - \left(\frac{v_{1e}}{c}\right)^2} \cdot v_{1e}^2 = h^2 \cdot (f_0^2 + f_1^2 - 2f_0 \cdot f_1 \cdot \cos \theta)$		0.4p
The conservation of energy	$m \cdot c^2 + h \cdot f_1 = m_0 \cdot c^2 + h \cdot f_0$	0.3p
or	$\frac{m_0 \cdot c^2}{\sqrt{1 - \left(\frac{v_{1e}}{c}\right)^2}} = m_0 \cdot c^2 + h \cdot (f_0 - f_1)$	0.2p
$\frac{m_0^2 \cdot c^4}{1 - \left(\frac{v_{1e}}{c}\right)^2} = m_0^2 \cdot c^4 + h^2 \cdot (f_0 - f_1)^2 + m_0 \cdot h \cdot c^2 \cdot (f_0 - f_1)$		0.2p
$\frac{h}{m_0 \cdot c} (1 - \cos \theta) = \frac{c}{f_1} - \frac{c}{f_0}$		0.2p
$\Lambda = \frac{h}{m_0 \cdot c}$		0.2p
the wavelength of scattered photon	$\lambda_0 = \lambda_i - \Lambda \cdot (1 - \cos \theta)$	0.3p
$\begin{cases} \lambda_i < \lambda_0 \\ E_i > E_0 \end{cases}$		0.1p

the situation before the second collision

the situation after this scattering process

	<p>The conservation principle for moment in the scattering process</p> $\begin{cases} \frac{h}{\lambda_0} = \frac{h}{\lambda_f} \cos \theta + m \cdot v_{2e} \cdot \cos \beta \\ \frac{h}{\lambda_f} \sin \theta - m \cdot v_{2e} \cdot \sin \beta = 0 \end{cases}$ $\left(\frac{h}{\lambda_f} \right)^2 + \left(\frac{h}{\lambda_0} \right)^2 - \frac{2 \cdot h^2}{\lambda_0 \cdot \lambda_f} \cos \theta = (m \cdot v_{2e})^2$ $\begin{cases} \frac{h}{m_0 \cdot c} \cdot (1 - \cos \theta) = \lambda_f - \lambda_0 \\ \lambda_f - \lambda_0 = \Lambda \cdot (1 - \cos \theta) \end{cases}$ $\begin{cases} \lambda_f > \lambda_0 \\ E_f < E_0 \end{cases}$ $\begin{cases} \lambda_f = 1,25 \times 10^{-10} \text{ m} \\ \Lambda = \frac{6,6 \times 10^{-34}}{9,1 \times 10^{-31} \cdot 3 \times 10^8} \text{ m} = 2,41 \times 10^{-12} \text{ m} = 0,02 \times 10^{-10} \text{ m} \end{cases}$ <p>the value of wavelength of photon before the second scattering $\lambda_0 = 1,23 \times 10^{-10} \text{ m}$</p> $\lambda_i = \lambda_f$ $\begin{cases} \vec{p}_{1e} = \vec{p}_{2e} \\ E_{1e} = E_{2e} \end{cases}$ <p>the moment of final electron</p> $p_{2e} = h \sqrt{\frac{1}{\lambda_f^2} + \frac{1}{(\lambda_f - \Lambda(1 - \cos \theta))^2} - \frac{2 \cdot \cos \theta}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos \theta))}}$ <p>The de Broglie wavelength of second electron after scattering (and of first electron before scattering)</p> $\lambda_{1e} = \lambda_{2e} = 1 \sqrt{\left(\sqrt{\frac{1}{\lambda_f^2} + \frac{1}{(\lambda_f - \Lambda(1 - \cos \theta))^2}} - \frac{2 \cdot \cos \theta}{\lambda_f \cdot (\lambda_f - \Lambda(1 - \cos \theta))} \right)}$ <p>final result: $\lambda_{1e} = \lambda_{2e} = 1,24 \times 10^{-10} \text{ m}$</p>		0.3p 0.3p 0.5p 0.1p 0.2p 0.1p 0.3p 0.2p 0.4p 0.3p 0.2p
	Total score theoretical question IV		7.0 points

Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and Research- Bucharest, Romania

Professor Adrian S. DAFINEI, Ph.D, Faculty of Physics – University of Bucharest, Romania