

MARKING SCHEME FOR ANSWERS TO THE THEORETICAL QUESTION III - OPTICS

Part	MARKING SCHEME - THE THEORETICAL QUESTION III - PRISMS	Total Scores
III. a.	<p>For:</p> $n_1(\lambda_0) = n_2(\lambda_0)$ $\lambda_0 = \sqrt{\frac{b_1 - b_2}{a_2 - a_1}}$ <p>final result: $\lambda_0 = 500 \text{ nm}$</p> $n_1(\lambda_0) = n_2(\lambda_0) = 1,5$	0.50p 0.25p 0.25p 0.25p
III. b.	<p>For the rays with different wavelength (λ_{red}, λ_0, λ_{violet}) having the same incidence angle on first prism, the paths are illustrated in the figure III.1</p>	2.00 points
III. c.	<p>For:</p> $n_1(\lambda_0) = n_2(\lambda_0) = \frac{\sin \frac{\delta_{\min} + A'}{2}}{\sin \frac{A'}{2}}$ $m(\hat{A}') = 30^\circ$ $\delta_{\min} = 2 \arcsin \left(\frac{3}{2} \cdot \sin \frac{A'}{2} \right) - \frac{A'}{2}$ <p>final result: $\delta_{\min} \approx 30,7^\circ$</p>	0.25p 0.25p 0.25p 0.25p

<p>III. d. For: the refraction law on the AD face $\sin i_1 = n_1 \cdot \sin r_1$</p>	<p>2.75 points</p>
	<p>0.25p</p>
<p>the refraction law on the AC face $n_1 \cdot \sin r_1' = n_2 \cdot \sin r_2$</p>	<p>0.25p</p>
$r_1 + r_1' = A_1$	<p>0.25p</p>
$r_2 = A_2$	<p>0.25p</p>
$i_1 = 30^\circ$	<p>0.25p</p>
$\sqrt{4n_1^2 - 1} = \frac{2n_2 \cdot \sin A_2 + \cos A_1}{\sin A_1}$	<p>0.50p</p>
$3 \cdot n_1^2 = 1 + n_2 + n_2^2$	<p>0.25p</p>
$\lambda^4 \cdot (3a_1^2 - a_2^2 - a_2 - 1) + (6a_1b_1 - b_2 - 2a_2b_2) \cdot \lambda^2 + 3b_1^2 - b_2^2 = 0$	<p>0.50p</p>
<p>final result: $\lambda \approx 1,2 \mu m$</p>	<p>0.25p</p>

*Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and Research- Bucharest, Romania
Professor Adrian S. DAFINEI, PhD, Faculty of Physics – University of Bucharest, Romania*