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Theoretical Problem 1

A static container of mass M and cylindrical shape is placed in vacuum. One of its
ends is closed. A fixed piston of mass m and negligible width separates the volume of the
container into two equal parts. The closed part contains n moles of monoatomic perfect gas
with molar mass Mg and temperature T. After releasing of the piston, it leaves the container
without friction. After that the gas also leaves the container. What is the final velocity of the
container?

The gas constant is R. The momentum of the gas up to the leaving of the piston can be
neglected. There is no heat exchange between the gas, container and the piston. The change
of the temperature of the gas, when it leaves the container, can be neglected. Do not account
for the gravitation of the Earth.

Theoretical Problem 2

An electric lamp of resistance Ry = 2 Q working at nominal voltage Uy = 4.5 V is
connected to accumulator of electromotive force E = 6 V and negligible internal resistance.

1. The nominal voltage of the lamp is ensured as the lamp is connected
potentiometrically to the accumulator using a rheostat with resistance R. What should be the
resistance R and what is the maximal electric current I, flowing in the rheostat, if the
efficiency of the system must not be smaller than 7, = 0.6?

2. What is the maximal possible efficiency 7 of the system and how the lamp can be
connected to the rheostat in this case?

Theoretical Problem 3

A detector of radiowaves in a radioastronomical observatory is placed on the sea
beach at height h = 2 m above the sea level. After the rise of a star, radiating electromagnetic
waves of wavelength 4 = 21 cm, above the horizont the detector registers series of
alternating maxima and minima. The registered signal is proportional to the intensity of the
detected waves. The detector registers waves with electric vector, vibrating in a direction
parallel to the sea surface.

1. Determine the angle between the star and the horizont in the moment when the
detector registers maxima and minima (in general form).

2. Does the signal decrease or increase just after the rise of the star?



3. Determine the signal ratio of the first maximum to the next minimum. At reflection
of the electromagnetic wave on the water surface, the ratio of the intensities of the electric
field of the reflected (E;) and incident (E;) wave follows the low:

E, n-cose

E. n+cose’

where n is the refraction index and ¢ is the incident angle of the wave. For the surface “air-
water” for A = 21 cm, the refraction index n = 9.

4. Does the ratio of the intensities of consecutive maxima and minima increase or
decrease with rising of the star?

Assume that the sea surface is flat.

Solution of the Theoretical Problem 1

Up to the moment when the piston leaves the container, the system can be considered
as a closed one. It follows from the laws of the conservation of the momentum and the energy:
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where v; — velocity of the container when the piston leaves it, u — velocity of the piston in the
same moment, AU — the change of the internal energy of the gas. The gas is perfect and
monoatomic, therefore

AU =%nRAT :gnR(I' -T.); 3)
Tt - the temperature of the gas in the moment when the piston leaves the container. This
temperature can be determined by the law of the adiabatic process:

pV7 =const.
Using the perfect gas equation pV =nRT , one obtains
TV’ =const., V=TV,

Using the relation V; =2V , and the fact that the adiabatic coefficient for one-atomic gas is
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=—= =—, the result for final temperature is:
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Solving the equations (1) — (4) we obtain
v, = [31-27%) mNRT )
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If the gas mass nMy is much smaller than the masses of the container M and the piston m,
then the equation (5) is simplified to:

v, = \/3(1—2-%)% (5)




When the piston leaves the container, the velocity of the container additionally increases to
value v, due to the hits of the atoms in the bottom of the container. Each atom gives the
container momentum:

p=2m,Av, ,
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where ma — mass of the atom; m, = N—° and v, can be obtained by the averaged quadratic
A

velocity of the atoms v? as follows:

2
— v :
vi+vy+vi=v?, and vi =vi =v?, therefore v, = 3 It appears that due to the elastic

impact of one atom the container receives averaged momentum
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All calculations are done assuming that the thermal velocities of the atoms are much larger
than the velocity of the container and that the movement is described using system connected
with the container.

Have in mind that only half of the atoms hit the bottom of the container, the total
momentum received by the container is
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and additional increase of the velocity of the container is
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Using the formula for the averaged quadratic velocity
\/v:2 _ 3RT;
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as well eq. (4) for the temperature T¢, the final result for v, is
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Therefore the final velocity of the container is
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Solution of the Theoretical Problem 2

1) The voltage U, of the lamp of resistance Ry is adjusted using the rheostat of
resistance R. Using the Kirchhoff laws one obtains:
UO + UO
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where R—R, is the resistance of the part of the rheostat, parallel connected to the lamp, Ry is
the resistance of the rest part,

U,=E-IR, )
The efficiency » of such a circuit is
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From eq. (3) it is seen that the maximal current, flowing in the rheostat, is determined by the
minimal value of the efficiency:
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The dependence of the resistance of the rheostat R on the efficiency » can determined
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replacing the value for the current | , obtained by the eq. (3), | = :EO , In the egs. (1) and (2):
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To answer the questions, the dependence R(r) must be investigated. By this reason

we find the first derivative R,’]:
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n < 1, therefore the above obtained derivative is positive and the function R(#) is increasing.
It means that the efficiency will be minimal when the rheostat resistance is minimal. Then
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The maximal current Iax can be calculated using eq. (4). The result is: Inax ~660 mA.



2) As the function R(#) is increasing one, 7 — 7,,., When R —oo. In this case the

total current I will be minimal and equal to ?0 Therefore the maximal efficiency is

U 0
n = =0.75
max E

This case can be realized connecting the rheostat in the circuit using only two of its
three plugs. The used part of the rheostat is Rj:

R, = E-Y, _E-U, R, ~0.67Q.

IO 0

Solution of the Theoretical Problem 3

1) The signal, registered by the detector A, is result of the interference of two rays:
the ray 1, incident directly from the star and the ray 2, reflected from the sea surface (see the
figure).

The phase of the second ray is shifted by n due to the reflection by a medium of larger
refractive index. Therefore, the phase difference between the two rays is:

AzAC+£—AB=L+£—(L]COS(ZQ)=
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The condition for an interference maximum is:
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where k = 1,2,3,...,19. (the difference of the optical paths cannot exceed 2h, therefore k
cannot exceed 19).
The condition for an interference minimum is:

i+ 2hsina,,, = (2k +1)i, or
2 2

) kA
Ssing,.. =— 3
amln 2h ( )

where k=1,2,3,...,19.



2) Just after the rise of the star the angular height « is zero, therefore the condition for
an interference minimum is satisfied. By this reason just after the rise of the star, the signal
will increase.

3) If the condition for an interference maximum is satisfied, the intensity of the
electric field is a sum of the intensities of the direct ray E; and the reflected ray E, ,
respectively: E, . =E, +E,.

Because E, = E; N=C% then E, = E{l+ n-—Cos (Dmaxj.
n+Cos¢ N+cosSe,..

From the figure it is seen that ¢, :%—a we obtain
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At the interference minimum, the resulting intensity is:
Emin = Ei - Er = Ei M (5)
n+sina

min
The intensity | of the signal is proportional to the square of the intensity of the electric
field E, therefore the ratio of the intensities of the consecutive maxima and minima is:

Imax _ Emax 2_ n2 (ﬂ—i_s’inamin)2 (6)
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Using the egs. (2) and (3), the eq. (6) can be transformed into the following form:
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Using this general formula, we can determine the ratio for the first maximum (k =1) and the
next minimum:
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4) Using that n >> % from the eq. (7) follows :
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So, with the rising of the star the ratio of the intensities of the consecutive maxima and
minima decreases.
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