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Abstract

The article contains the competition problems given at the 7th International Physics
Olympiad (Warsaw, 1974) and their solutions.

Introduction

The 7" International Physics Olympiad (Warsaw, 1974) was the second one organized
in Poland. It took place after a one-year organizational gap, as no country was able to
organize the competition in 1973.

The original English version of the problems of the 7™ IPhO has not been preserved.
We would like to remind that the permanent Secretariat of the IPhOs was established only in
1983; previously the Olympic materials had been collected by individual people in their
private archives and, in general, are not complete. English texts of the problems and
simplified solutions are available in the book by R. Kunfalvi [1]. Unfortunately, they are
somewhat deformed as compared to the originals. Fortunately, we have very precise Polish
texts. Also the full solutions in Polish are available. This article is based on the books [2, 3]
and article [4].

The competition problems were prepared especially for the 7" IPhO by Andrzej
Szymacha (theoretical problems) and Jerzy Langer (experimental problem).

THEORETICAL PROBLEMS
Problem 1

A hydrogen atom in the ground state, moving with velocityv, collides with another
hydrogen atom in the ground state at rest. Using the Bohr model find the smallest velocity v,

of the atom below which the collision must be elastic.

At velocity v, the collision may be inelastic and the colliding atoms may emit

electromagnetic radiation. Estimate the difference of frequencies of the radiation emitted in
the direction of the initial velocity of the hydrogen atom and in the opposite direction as a
fraction (expressed in percents) of their arithmetic mean value.

Data:
me* 0B e
E = =13.6eV =2.18-187" J; (ionization energy of hydrogen atom)

oot

m,, =1.67-107*" kg ; (mass of hydrogen atom)
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(m - mass of electron; e - electric charge of electron; 7 - Planck constant; numerical
values of these quantities are not necessary.)

Solution

According to the Bohr model the energy levels of the hydrogen atom are given by the
formula:

where n= 1, 2, 3, ... The ground state corresponds to n=1, while the lowest excited state
corresponds to n=2. Thus, the smallest energy necessary for excitation of the hydrogen atom
Is:

AE = Ez_Elei(l_%):%Ei-

During an inelastic collision a part of kinetic energy of the colliding particles is
converted into their internal energy. The internal energy of the system of two hydrogen atoms
considered in the problem cannot be changed by less than AE. It means that if the kinetic
energy of the colliding atoms with respect to their center of mass is less than AE, then the
collision must be an elastic one. The value of v, can be found by considering the critical case,
when the kinetic energy of the colliding atoms is equal to the smallest energy of excitation.
With respect to the center of mass the atoms move in opposite direction with velocities $v, .
Thus

and

V, = /ﬁ (= 6.26-10" m/s).
mH

Consider the case when v=v,. The collision may be elastic or inelastic. When the

collision is elastic the atoms remain in their ground states and do not emit radiation. Radiation
is possible only when the collision is inelastic. Of course, only the atom excited in the
collision can emit the radiation. In principle, the radiation can be emitted in any direction, but
according to the text of the problem we have to consider radiation emitted in the direction of
the initial velocity and in the opposite direction only. After the inelastic collision both atom
are moving (in the laboratory system) with the same velocities equal to 1v,. Let f denotes
the frequency of radiation emitted by the hydrogen atom in the mass center (i.e. at rest).

Because of the Doppler effect, in the laboratory system this frequency is observed as (c
denotes the velocity of light):



1
a) f1:[1+ﬂjf - for radiation emitted in the direction of the initial velocity of the
C

hydrogen atom,

1
b) f, :(1—ﬂjf - for radiation emitted in opposite direction.
C

The arithmetic mean value of these frequencies is equal to f . Thus the required ratio
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In the above solution we took into account that v, <<c . Otherwise it would be

necessary to use relativistic formulae for the Doppler effect. Also we neglected the recoil of
atom(s) in the emission process. One should notice that for the visible radiation or radiation
not too far from the visible range the recoil cannot change significantly the numerical results

for the critical velocity v, and the ratio % The recoil is important for high-energy quanta,

but it is not this case.
The solutions were marked according to the following scheme (draft):

1. Energy of excitation up to 3 points

2. Correct description of the physical processes up to 4 points

3. Doppler effect up to 3 points
Problem 2

Consider a parallel, transparent plate of thickness d — Fig. 1. Its refraction index varies
as

v




Fig. 1

A light beam enters from the air perpendicularly to the plate at the point A (xa = 0) and
emerges from it at the point B at an angle « .

1. Find the refraction index ng at the point B.
2. Find x; (i.e. value of x at the point B)
3. Find the thickness d of the plate.

Data:
n,=12; R=13cm; a=30°.

Solution

Ny Ny N3

Fig. 2

Consider a light ray passing through a system of parallel plates with different
refractive indexes — Fig. 2. From the Snell law we have

sing, n

A
sing, n,
n,sin B, =n,sin g,.
In the same way we get
n,sin B, =n,sin g, etc.

Thus, in general:
n; sin f; = const.



This relation does not involve plates thickness nor their number. So, we may make use
of it also in case of continuous dependence of the refractive index in one direction (in our case
in the x direction).

Consider the situation shown in Fig. 3.

i

Fig. 3

At the point A the angle £, =90°. The refractive index at this point is n,. Thus, we have

n,sin B, =ngsin g,
N, =Ng Sin f;.

Additionally, from the Snell law applied to the refraction at the point B, we have

sina B
sin(90°— ;) °

Therefore
sina =Ny €08 iy = Ngy/1-sin? B, =+/n2 —(ngsin f)? =4/nZ —n?
and finally
Ng =4/ +sin’a .
Numerically

2 2
Ng = E + i =1.3
10 10



The value of x; can be found from the dependence n(x) given in the text of the
problem. We have

Numerically

The answer to the third question requires determination of the trajectory of the light
ray. According to considerations described at the beginning of the solution we may write (see
Fig. 4):

n(x)sin g(x)=n,.
Thus

ng, R-X
nx) R

sin B(x) =

Fig. 4

Consider the direction of the ray crossing a point C on the circle with radius R and
center in point O as shown in Fig. 4. We see that

sin £ COC' =¥ =sin B(x) .

Therefore, the angle £ COC' must be equal to the angle S(x) formed at the point C by the
light ray and CC". It means that at the point C the ray must be tangent to the circle. Moreover,
the ray that is tangent to the circle at some point must be tangent also at farther points.
Therefore, the ray cannot leave the circle (as long as it is inside the plate)! But at the



beginning the ray (at the point A) is tangent to the circle. Thus, the ray must propagate along
the circle shown in Fig. 4 until reaching point B where it leaves the plate.

Already we know that A'B = 1 cm. Thus, B'B = 12 cm and from the rectangular
triangle BB'O we get

d=B'0=4+13*-12 cm =5 cm.

The shape of the trajectory y(x) can be determined also by using more sophisticated
calculations. Knowing f£(x) we find tg A(x) :

R—-x

JRPZ(R=x)?

But tg S(x) is the derivative of y(x). So, we have

y__Rx (R Rox)

dx . JR2—(r-x)? " dx

tg f(x) =

Thus

y=+/R? —(R-X)* + const

Value of const can be found from the condition
y(0)=0.

Finally:

y=4R?>—=(R=x)*.

It means that the ray moves in the plate along to the circle as found previously.

A

<




Fig. 5

Now we will present yet another, already the third, method of proving that the light in
the plate must move along the circle.

We draw a number of straight lines (inside the plate) close to each other and passing
trough the point (R,0) - Fig. 5. From the formula given in the text of the problem it follows
that the refraction index on each of these lines is inversely proportional to the distance to the
point (R,0). Now we draw several arcs with the center at (R,0). It is obvious that the geometric
length of each arc between two lines is proportional to the distance to the point (R,0).

It follows from the above that the optical path (a product of geometric length and
refractive index) along each arc between the two lines (close to each other) is the same for all
the arcs.

Assume that at +-certain moment t the wave front reached one of the lines, e.g. the
line marked with a black dot in Fig. 5. According to the Huygens principle, the secondary
sources on this line emit secondary waves. Their envelope forms the wave front of the real
wave at some time t+ At. The wave fronts of secondary waves, shown in Fig. 5, have
different geometric radii, but - in view of our previous considerations - their optical radii are
exactly the same. It means that at the time t + At the new wave front will correspond to one
of the lines passing trough (R,0). At the beginning the wave front of the light coincided with
the x axis, it means that inside the plate the light will move along the circle with center at the
point (R,0).

The solutions were marked according to the following scheme (draft):

1. Proof of the relation nsin = const up to 2 points
2. Correct description of refraction at points A and B up to 2 points
3. Calculation of xg up to 1 point
4. Calculation of d up to 5 points
Problem 3

A scientific expedition stayed on an uninhabited island. The members of the
expedition had had some sources of energy, but after some time these sources exhausted.
Then they decided to construct an alternative energy source. Unfortunately, the island was
very quiet: there were no winds, clouds uniformly covered the sky, the air pressure was
constant and the temperatures of air and water in the sea were the same during day and night.
Fortunately, they found a source of chemically neutral gas outgoing very slowly from a cavity.
The pressure and temperature of the gas are exactly the same as the pressure and temperature
of the atmosphere.

The expedition had, however, certain membranes in its equipment. One of them was
ideally transparent for gas and ideally non-transparent for air. Another one had an opposite
property: it was ideally transparent for air and ideally non-transparent for gas. The members
of the expedition had materials and tools that allowed them to make different mechanical
devices such as cylinders with pistons, valves etc. They decided to construct an engine by
using the gas from the cavity.

Show that there is no theoretical limit on the power of an ideal engine that uses the gas
and the membranes considered above.

Solution



Let us construct the device shown in Fig. 6. B; denotes the membrane transparent for
the gas from the cavity, but non-transparent for the air, while B, denotes the membrane with
opposite property: it is transparent for the air but non-transparent for the gas.

Initially the valve Z; is open and the valve Z; is closed. In the initial situation, when
we Kkeep the piston at rest, the pressure under the piston is equal to p, + p, due to the Dalton
law. Let V, denotes an initial volume of the gas (at pressure p,).

Now we close the valve Z; and allow the gas in the cylinder to expand. During
movement of the piston in the downwards direction we obtain certain work performed by

excess pressure inside the cylinder with respect to the atmospheric pressure p,. The partial
pressure of the gas in the cylinder will be reduced according to the formula p=p,V,/V,

where V denotes volume closed by the piston (isothermal process). Due to the membrane B,
the partial pressure of the air in the cylinder all the time is p, and balances the air pressure

outside the cylinder. It means that only the gas from the cavity effectively performs the work.

Po

Fig. 6

Consider the problem of limits for the work that can be performed during isothermal
expansion of an initial portion of the gas. Let us analyze the graph of the function p,V,/V

versus V shown in Fig. 7.

It is obvious that the amount of work performed by the gas during isothermal
expansion from V, to V, is represented by the area under the curve (shown in the graph) from

V, to V,. Of course, the work is proportional to V,. We shall prove that for large enough V,
the work can be arbitrarily large.

Consider V =V, 2V,, 4V,, 8V,,16V,, ... It is clear that the rectangles I, II, III, ... (see
Fig. 7) have the same area and that one may draw arbitrarily large number of such rectangles



under the considered curve. It means that during isothermal expansion of a given portion of
the gas we may obtain arbitrarily large work (at the cost of the heat taken from sthe
urrounding) — it is enough to take V, large enough.

After reaching V, we open the valve Z, and move the piston to its initial position
without performing any work. The cycle can be repeated as many times as we want.

In the above considerations we focused our attention on the work obtained during one
cycle only. We entirely neglected dynamics of the process, while each cycle lasts some time.
One may think that - in principle - the length of the cycle increases very rapidly with the
effective work we obtain. This would limit the power of the device we consider.

Take, however, into account that, by proper choice of various parameters of the device,
the time taken by one cycle can be made small and the initial volume of the gas V, can be

made arbitrarily large (we consider only theoretical possibilities — we neglect practical
difficulties entirely). E.g. by taking large size of the membrane B; and large size of the piston
we may minimize the time of taking the initial portion of the gas V, from the cavity and make

this portion very great.

In our analysis we neglected all losses, friction, etc. One should remark that there are
no theoretical limits for them. These losses, friction etc. can be made negligibly small.

w
v

Po/2 -

p()/ 4

The device we analyzed is very interesting: it produces work at cost of heat taken from
surrounding without any difference in temperatures. Does this contradict the second law of
thermodynamics? No! It is true that there is no temperature difference in the system, but the
work of the device makes irreversible changes in the system (mixing of the gas from the
cavity and the air).



The solutions were marked according to the following scheme (draft):

1. Model of an engine and its description up to 4 points
2. Proof that there is no theoretical limit for power up to 4 points
3. Remark on Il law of thermodynamics up to 2 points

EXPERIMENTAL PROBLEM

In a "black box™ there are two identical semiconducting diodes and one resistor
connected in some unknown way. By using instruments provided by the organizers find the
resistance of the resistor.

Remark: One may assume that the diode conducts current in one direction only.

List of instruments: two universal volt-ammeters (without ohmmeters), battery, wires
with endings, graph paper, resistor with regulated resistance.

Solution

At the beginning we perform preliminary measurements by using the circuit shown in
Fig. 8. For two values of voltage U, and U, , applied to the black box in both directions, we

measure four values of current: 1(U,), 1(U,), 1(-U,) and 1(-U,). In this way we find that:

1. The black box conducts current in both directions;
2. There is an asymmetry with respect to the sign of the voltage;
3. In both directions current is a nonlinear function of voltage.

(mAY.
PN

Fig. 8

The diodes and resistor can be connected in a limited number of ways shown in Fig. 9
(connections that differ from each other in a trivial way have been omitted).

IRvAV, %
v A %
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Fig. 9

Only one of these connections has the properties mentioned at the beginning. It is:

B

—>—11

>
A

Fig. 10
For absolute values of voltages we have
U,=U,-U,=AU,

where U, denotes voltage on the resistor when a current | flows trough the branch B, U, -
voltage on the black box when the current 1 flows through the branch A, and U - voltage on

the black box when the current | flows through the branch B.
Therefore

_Ug(1) _Ug()-U,(1) _AU

R
| | |

It follows from the above that it is enough to take characteristics of the black box in
both directions: by subtraction of the corresponding points (graphically) we obtain a straight
line (example is shown in Fig. 11) whose slope allows to determine the value of R.

The solutions were marked according to the following scheme (draft):



Theoretical part:

1. Proper circuit and method allowing determination of connections
the elements in the black box up to 6 points
2. Determination of R (principle) up to 2 points
3. Remark that measurements at the same voltage in both
directions make the error smaller up to 1 point
4. Role of number of measurements (affect on errors) up to 1 point
Experimental part:
1. Proper use of regulated resistor as potentiometer up to 2 points
2. Practical determination of R (including error) up to 4 points
3. Proper use of measuring instruments up to 2 points
4. Taking into account that temperature of diodes increases during
measurements up to 1 point
5. Taking class of measuring instruments into account up to 1 point
A
AU |
[mV]
[
200
|
150 I
| 1
[
100
80
60
40
20
| | | .
0 10 15 20 25 |
[mA]
Fig. 11
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