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The sixth IPhO was held in Bucharest and the participants were: Bulgaria,
Czechoslovakia, Cuba, France, German Democratic Republic, Hungary, Poland, Romania, and
Soviet Union. It was an important event because it was the first time when a non-European
country and a western country participated (Cuba), and Sweden sent one observer.

The International Board selected four theoretical problems and an experimental
problem. Each theoretical problem was scored from 0 to 10 and the maximum score for the
experimental problem was 20. The highest score corresponding to actual marking system was
47,5 points. Each team consisted in six students. Four students obtained the first prize, seven
students obtained the second prize, ten students obtained the third prize, thirteen students had
got honorable mentions, and two special prizes were awarded too.

The article contains the competition problems given at the 6™ International Physics
Olympiad (Bucharest, 1972) and their solutions. The problems were translated from the book
published in Romania concerning the first nine International Physics Olympiads?, because |
couldn’t find the original English version.

Theoretical problems
Problem 1 (Mechanics)

Three cylinders with the same mass, the same length and the same external radius are
initially resting on an inclined plane. The coefficient of sliding friction on the inclined plane, p,
is known and has the same value for all the cylinders. The first cylinder is empty (tube) , the
second is homogeneous filled, and the third has a cavity exactly like the first, but closed with
two negligible mass lids and filled with a liquid with the same density like the cylinder’s walls.
The friction between the liquid and the cylinder wall is considered negligible. The density of
the material of the first cylinder is n times greater than that of the second or of the third
cylinder.

Determine:

a) The linear acceleration of the cylinders in the non-sliding case. Compare all the
accelerations.

b) Condition for angle a of the inclined plane so that no cylinders is sliding.

C) The reciprocal ratios of the angular accelerations in the case of roll over with
sliding of all the three cylinders. Make a comparison between these accelerations.

d) The interaction force between the liquid and the walls of the cylinder in the case
of sliding of this cylinder, knowing that the liquid mass is m;.
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Solution Problem 1

The inertia moments of the three cylinders are:

|1=%p17z(R4—r4)h, |2=%p2;zR4h=%mR2 , I3:%p2ﬂ(R4—r4)h, 1)
Because the three cylinders have the same mass :
m=pz(R? =12 h = p,zRh @)
it results:
rZ:R{l—&j:Rz(l—lj,n:ﬂ ©)
P n P2

The inertia moments can be written:

1 1)1 |
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In the expression of the inertia momentum |, the sum of the two factors is constant:

(2—ij+£:2
n) n

independent of n, so that their products are maximum when these factors are equal:

n n n) n
is les than 1. It results:

2—1 = 1 ; it results n = 1, and the products (2 —ljl =1. In fact n > 1, so that the products

I1>1>13 (5)
For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations:

mgsina —F, =ma (6)
N -mgcosa =0
FR=l¢g (7)

where ¢ is the angular acceleration. If the cylinder doesn’t slide we have the condition:
a=eR 8

Solving the equation system (6-8) we find:
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The condition of non-sliding is:

Ff < uN = pumgsina

tga < ;{1+ m ZJ (10)

Fig. 1.1

In the case of the cylinders from this problem, the condition necessary so that none of them
slides is obtained for maximum |I:

2 —
tgaul 1+ MR | = 40—t (11)
I 2n-1
The accelerations of the cylinders are:
_ 295|n01: ’ a2:295ma Ca - 2gsmf . (12)
3+ (1-") 3 3-(1- )
n n
The relation between accelerations:
a<ap<as (13)
In the case than all the three cylinders slide:
F, = uN = umgcosa (14)

and from (7) results:



£ = IE Mg COS (15)

for the cylinders of the problem:

E1E, & =Ii:li:li=1:(l_£j:n
1 2 3 n

€1<& < &3 (16)
In the case that one of the cylinders is sliding:

mgsina —F, =ma, F, =umgcosa, (17)
a=g(sina—pucosa) (18)

Let F be the total force acting on the liquid mass m; inside the cylinder (fig.1.2), we can write:

F, +mgsing =ma=mg(sina — ucosa), F,—mgcosa=0 (19)

F=,F>+ Ff =m,gcosa -1+ u* =mg cosa (20)

CoS¢

where ¢ is the friction angle (tg¢ = y).

Fig. 1.2

Problem 2 (Molecular Physics)

Two cylinders A and B, with equal diameters have inside two pistons with negligible
mass connected by a rigid rod. The pistons can move freely. The rod is a short tube with a
valve. The valve is initially closed (fig. 2.1).



A L B Fig. 2.1

The cylinder A and his piston is adiabatically insulated and the cylinder B is in thermal contact
with a thermostat which has the temperature 6 = 27°C.

Initially the piston of the cylinder A is fixed and inside there is a mass m= 32 kg of argon at a
pressure higher than the atmospheric pressure. Inside the cylinder B there is a mass of oxygen
at the normal atmospheric pressure.

Liberating the piston of the cylinder A, it moves slowly enough (quasi-static) and at
equilibrium the volume of the gas is eight times higher, and in the cylinder B de oxygen’s
density increased two times. Knowing that the thermostat received the heat Q =747,9.10%J,
determine:

a) Establish on the base of the kinetic theory of the gases, studying the elastic collisions
of the molecules with the piston, that the thermal equation of the process taking place in the
cylinder A is TV#? = constant.

b) Calculate the parameters p, V, and T of argon in the initial and final states.

¢) Opening the valve which separates the two cylinders, calculate the final pressure of the
mixture of the gases.

The kilo-molar mass of argon is p = 40 kg/kmol.

Solution Problem 2

a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the
piston perfect elastic. In such a collision with a fix wall the speed v of the particle changes
only the direction so that the speed vV and the speed v'after collision there are in the same
plane with the normal and the incident and reflection angle are equal.

V, =V, V, =V, (1)
In the problem the wall moves with the speed U perpendicular on the wall. The relative speed

of the particle with respect the wall isV — U . Choosing the Oz axis perpendicular on the wall in
the sense of U, the conditions of the elastic collision give:

(V-0), =-(v -0),, (7-10),, =@ -a),,;
v, —U :—(v'Z —u) LV, =20V, v, =V, (2)
The increase of the kinetic energy of the particle with mass m, after collision is:
1 o 1 1 :
2 0 2 _Emovz :Emo(vzz
because u is much smaller thanv, .
If n, is the number of molecules from unit volume with the speed componentyv,, , then the

number of molecules with this component which collide in the time dt the area dS of the piston
is:

—v?)=2mu(u-v,)=-2muv, (3)



%nkvzk dds  (4)
These molecules will have a change of the kinetic energy:

%nkvzkdtds(— 2m,uv, )=-mnvidv (5)

where dV =udtdS is the increase of the volume of gas.
The change of the kinetic energy of the gas corresponding to the increase of volume dV is:

dE, =-m,dV > nv5 :—%nmovzdv (6)
k

and:

2
my* AV _ 2, dv @
2 V 3 V

du =_2N
3

Integrating equation (7) results:
UV 2’® = const. (8)
The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature
T and the equation (8) can be written:
TV #3 = const. (9)
b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The
internal energy will be modified only by the adiabatic process suffered by argon gas:
AU =vC,AT =mc, AT (10)

where v is the number of kilomoles. For argon C, :gR.

For the entire system L=0and AU =Q.

We will use indices 1, respectively 2, for the measures corresponding to argon from cylinder A,
respectively oxygen from the cylinder B:

2/3
aU=" 3 R 7)== 3R, [ﬁ] - (11)
My 2 My 2 Vi
From equation (11) results:
1:3.&.9.%/3:1000K (12)
3 m R [y
L -1
Vl
T
T, = i 250K (13)
For the isothermal process suffered by oxygen:
P2 _ P2 (14)

P2 P,

p, = 2,00atm = 2,026-10°N /m®



From the equilibrium condition:

p, = p, = 2atm (15)
For argon:
' Vll Tl 5 2
p, =P, — — =64atm =64,9-10°N /m* (16)
Vl Tl
V, =8 AL 102m®,V, =8V, =816m° (17)
My Py

c) When the valve is opened the gases intermix and at thermal equilibrium the final
pressure will be p" and the temperature T. The total number of kilomoles is constant:

Vl +V2 :VI, plvl + p2V2 _ p(\/l +V2) (18)

RTl' RT RT
p, + p, =2atm, T, =T, =T = 300K
The total volume of the system is constant:

VoAV, =V +v, 2Py Ve qqame (19)
Ve o 2

From equation (18) results the final pressure:

p= pi-#- Vl'-l.+V2' = 2,2atm = 2,23-10°N /m? (20)
V, +V, L

Problem 3 (Electricity)

A plane capacitor with rectangular plates is fixed in a vertical position having the lower
part in contact with a dielectric liquid (fig. 3.1)
Determine the height, h, of the liquid between the plates and explain the phenomenon.
The capillarity effects are neglected.
It is supposed that the distance between the plates is much smaller than the linear dimensions
of the plates.

A

H Fig. 3.1
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It is known: the initial intensity of the electric field of the charged capacitor, E, the density p,
the relative electric permittivity &, of the liquid, and the height H of the plates of the capacitor.
Discussion.



Solution Problem 3

The initial energy on the capacitor is:

2

W,=2.CuZ=". )
2 2 C,

H is the height of the plates, | is the width of the capacitor’s plates, and d is the distance

between the plates.

When the plates contact the liquid’s surface on the dielectric liquid is exerted a vertical force.

The total electric charge remains constant and there is no energy transferred to the system from

outside. The increase of the gravitational energy is compensated by the decrease of the

electrical energy on the capacitor:

g, HI

,Where C, =

W, =W, +W, 2
wl=%- CZ w2=%pgh2|d ®)
C=C,+C, = g.¢€.hl N go(Hd— h)i @)
Introducing (3) and (4) in equation (2) it results:
(6, —1)h? + Hh—EfgL(gr_lL 0
A9

The solution is:

L9H

h, = H . .[1i\/1¢4E°2‘9°(8r1)2] (8)

Discussion: Only the positive solution has sense. Taking in account that H is much more grater
than h we obtain the final result:

h~ go(gr _1) E02
~9

Problem 4 (Optics)

A thin lens plane-convex with the diameter 2r, the curvature radius R and the refractive
index ny is positioned so that on its left side is air (n; =1), and on its right side there is a
transparent medium with the refractive index n, # 1. The convex face of the lens is directed
towards air. In the air, at the distance s;from the lens, measured on the principal optic ax, there
is a punctual source of monochromatic light.
a) Demonstrate, using Gauss approximation, that between the position of the image, given by
the distance s, from the lens, and the position of the light source, exists the relation:
L + k — 1
S1 SZ



where f; and f; are the focal distances of the lens, in air, respectively in the medium with the
refractive index nj.

Observation: All the refractive indexes are absolute indexes.

b) The lens is cut perpendicular on its plane face in two equal parts. These parts are moved
away at a distance & <<r (Billet lens). On the symmetry axis of the system obtained is led a
punctual source of light at the distance s; (s; > 1) (fig. 4.1). On the right side of the lens there
is a screen E at the distance d. The screen is parallel with the plane face of the lens. On this
screen there are N interference fringes, if on the right side of the lens is air.

Determine N function of the wave length.

Fig. 4.1
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Solution problem 4

a) From the Fermat principle it results that the time the light arrives from P, to P, is not
dependent of the way, in gauss approximation (P, and P, are conjugated points).

I
|
I
|
B, Cq Vil 0 V2 G2 Py 1942

T, is the time the light roams the optical way P,V,0V,P, (fig. 4.2):
2 2
T, = AM | BM , where bM =,/P,0* + MO? ~ PO + h ,and P,M ~ P,0 + h
v, v, 2P0 2P,0
because h = OM is much more smaller than P,O or P,O.
2
T1=E+@+h—- 1 + 1 ;T2:P1Vl+v2 P2+V1V2
A v, 2 \vRO v,P,0 A v, v

1)



VV, =—. i+i (2
Rl RZ

From conditionT, =T,, it results:

1 1 11 1 1 1
+ == =—+=—|-—- (3)
vPO Vv,P,O Vv(R, R,) vR VR,

o . c . :
Taking in account the relationv = —, and using PO =s,,0OP, =s,, the relation (3) can be
n

written:
&_Fn_zzno i+i __1 — 1 (4)
s, S, R, R,) vR VR,
If the point P, is at infinite, s, becomes the focal distance; the same for P, .
1 1 n,-n  n,-n, ; 11 n,-n  n,—n, 5)
f, n, R, R, f, n R, R,
From the equations (30 and (4) it results:
A + T =1 (6)
S1 SZ

The lens is plane-convex (fig. 4.3) and its focal distances are:

n1=1 ﬂ2
! Fig. 4.3
Ng
Ry=co R1=R
n.R n,R n,R
fl — 1 _ R ’ f2 — 2 — 2 (7)
n,-n n,-1 n,—n n,-1

b) Inthe case of Billet lenses, S, and S, are the real images of the object S and can be
considered like coherent light sources (fig. 4.4).

10
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0,0, = A is much more smaller than r:

Fig. 4.4

OM =A+r~r, SO~SO, ~S0, = p,, 5,0, =5,0,~S0=p,, S,S, =A~(1+

We calculate the width of the interference field RR™ (fig. 4.4).

RR' :2-RA:2-s'A-tg%, SAzd-p,, tg%zL, RR =2(d - p,)-—

P,
Maximum interference condition is:

S,N=k-4
The fringe of k order is located at a distance x, from A:
A[l+ DZJ
Py
The expression of the inter-fringes distance is:
P A(d — pz)

i= 9)
A(l + pJ
Py

The number of observed fringes on the screen is:

RR 1+&
N :fzer'—pl

i Ap,
p, can be expressed from the lenses’ formula:

X, =k-

(10)

p, f

pz:pl—f

2

P
P,

|
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Experimental part (Mechanics)

There are given two cylindrical bodies (having identical external shapes and from the
same material), two measuring rules, one graduated and other un-graduated, and a vessel with
water.

It is known that one of the bodies is homogenous and the other has an internal cavity with the
following characteristics:

- the cavity is cylindrical

- has the axis parallel with the axis of the body

- its length is practically equal with that of the body
Determine experimentally and justify theoretically:

a) The density of the material the two bodies consist of.

b) The radius of the internal cavity.

c) The distance between the axis of the cavity and the axis of the cylinder.

d) Indicate the sources of errors and appreciate which of them influences more the final

results.
Write all the variants you have found.

Solution of the experimental problem

a) Determination of the density of the material
The average density of the two bodies was chosen so that the bodies float on the water.
Using the mass of the liquid crowded out it is determined the mass of the first body (the
homogenous body):

m:ma :Vapa :SaHpa (1)
where S, is the area of the base immersed in water, H the length of the cylinder and p, is the
density of water.
The mass of the cylinder is:

m=V-p=aR’Hp )
It results the density of the body:
S
P=Pa o 3)

To calculate the area S, it is measured the distance h above the water surface (fig. 5.1). Area is
composed by the area of the triangle OAB plus the area of the circular sector with the angle
2w -26.

The triangle area:

~2)R*=(R-h) -(R-h)=(R-n}hEZR-N) @)

12



Fig. 5.1

The circular sector area is:

2(7r — 9)
2r

aR? :Rz[ﬁ—arccosRI;h) (5)

The immersed area is:

S, =(R-h)/h(2R—h)+ Rz(n—arccosRT_hj (6)

where R and h are measured by the graduated rule.
b) The radius of the cylindrical cavity
The second body (with cavity) is dislocating a water mass:
m=m,=S,Hp, (7)

where S;’ is area immersed in water.
The mass of the body having the cavity inside is:

m = -v)p=z(R*-r?JHp (8)
The cavity radius is:

r=[R?-22.5. (9)
7p

S, is determined like S,.
c¢) The distance between the cylinder’s axis and the cavity axis
We put the second body on the horizontal table (or let it to float in water) and we trace the
vertical symmetry axis AB (fig. 5.2).
Using the rule we make an inclined plane. We put the body on this plane and we determine the
maximum angle of the inclined plane for the situation the body remains in rest (the body
doesn’t roll). Taking in account that the weight centre is located on the axis AB on the left side
of the cylinder axis (point G in fig. 5.2) and that at equilibrium the weight centre is on the
same vertical with the contact point between the cylinder and the inclined plane, we obtain the
situation corresponding to the maximum angle of the inclined plane (the diameter AB is
horizontal).

13



Fig. 5.2

The distance OG is calculated from the equilibrium condition:
m -OG =m_ -X , (M = the mass dislocated by the cavity)  (10)

OG =Rsina  (11)

m . R*-r’?
X=0G-—=R-sina- 5
m, r
d) At every measurement it must be estimated the reading error. Taking in account the
expressions for p, r and x it is evaluated the maximum error for the determination of these

measures.

(12)
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