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Abstract

The article contains the competition problems given at he 1% International Physics
Olympiad (Warsaw, 1967) and their solutions. Additionally it contains comments of historical
character.

Introduction

One of the most important points when preparing the students to the International
Physics Olympiads is solving and analysis of the competition problems given in the past.
Unfortunately, it is very difficult to find appropriate materials. The proceedings of the
subsequent Olympiads are published starting from the XV IPhO in Sigtuna (Sweden, 1984). It
is true that some of very old problems were published (not always in English) in different
books or articles, but they are practically unavailable. Moreover, sometimes they are more or
less substantially changed.

The original English versions of the problems of the 1% IPhO have not been conserved.
The permanent Secretariat of the IPhOs was created in 1983. Until this year the Olympic
materials were collected by different persons in their private archives. These archives as a rule
were of amateur character and practically no one of them was complete. This article is based
on the books by R. Kunfalvi [1], Tadeusz Pniewski [2] and Waldemar Gorzkowski [3].
Tadeusz Pniewski was one of the members of the Organizing Committee of the Polish
Physics Olympiad when the 1% IPhO took place, while R. Kunfalvi was one of the members
of the International Board at the 1% IPhO. For that it seems that credibility of these materials
is very high. The differences between versions presented by R. Kunfalvi and T. Pniewski are
rather very small (although the book by Pniewski is richer, especially with respect to the
solution to the experimental problem).

As regards the competition problems given in Sigtuna (1984) or later, they are
available, in principle, in appropriate proceedings. “In principle” as the proceedings usually
were published in a small number of copies, not enough to satisfy present needs of people
interested in our competition. It is true that every year the organizers provide the permanent
Secretariat with a number of copies of the proceedings for free dissemination. But the needs
are continually growing up and we have disseminated practically all what we had.

The competition problems were commonly available (at least for some time) just only
from the XXVI IPhO in Canberra (Australia) as from that time the organizers started putting
the problems on their home pages. The Olympic home page www.jyu.fi/ipho contains the
problems starting from the XXVIII IPhO in Sudbury (Canada). Unfortunately, the problems
given in Canberra (XXVI IPhO) and in Oslo (XXVII IPhO) are not present there.

The net result is such that finding the competition problems of the Olympiads
organized prior to Sudbury is very difficult. It seems that the best way of improving the
situation is publishing the competition problems of the older Olympiads in our journal. The
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question arises, however, who should do it. According to the Statutes the problems are created
by the local organizing committees. It is true that the texts are improved and accepted by the
International Board, but always the organizers bear the main responsibility for the topics of
the problems, their structure and quality. On the other hand, the glory resulting of high level
problems goes to them. For the above it is absolutely clear to me that they should have an
absolute priority with respect to any form of publication. So, the best way would be to publish
the problems of the older Olympiads by representatives of the organizers from different
countries.

Poland organized the IPhOs for thee times: I IPhO (1967), VII IPhO (1974) and XX
IPhO (1989). So, | have decided to give a good example and present the competition problems
of these Olympiads in three subsequent articles. At the same time | ask our Colleagues and
Friends from other countries for doing the same with respect to the Olympiads organized in
their countries prior to the XXVIII IPhO (Sudbury).

I IPhO (Warsaw 1967)

The problems were created by the Organizing Committee. At present we are not able
to recover the names of the authors of the problems.

Theoretical problems
Problem 1

A small ball with mass M = 0.2 kg rests on a vertical column with height h = 5m. A
bullet with mass m = 0.01 kg, moving with velocity v, = 500 m/s, passes horizontally through
the center of the ball (Fig. 1). The ball reaches the ground at a distance s = 20 m. Where does
the bullet reach the ground? What part of the kinetic energy of the bullet was converted into
heat2 when the bullet passed trough the ball? Neglect resistance of the air. Assume that g = 10
m/s”.
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Fig. 1




Solution

o —> M ) ]
m Vo v — horizontal component of the velocity
of the bullet after collision
V - horizontal component of the velocity
of the ball after collision
h

Fig. 2
We will use notation shown in Fig. 2.

As no horizontal force acts on the system ball + bullet, the horizontal component of
momentum of this system before collision and after collision must be the same:

mv, = mv+MV.

So,

v:vo—%v.

From conditions described in the text of the problem it follows that
v>V.
After collision both the ball and the bullet continue a free motion in the gravitational

field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of
the bullet are continued for the same time:



It is time of free fall from height h.
The distances passed by the ball and bullet during time t are:

s=Vt and d=vt,

respectively. Thus

V=s i.
2h
Therefore
V=V, ——S 9
m V2h
Finally:
d=v, /Z_h —Ms.
g m
Numerically:
d =100 m.
The total kinetic energy of the system was equal to the initial kinetic energy of the
bullet:
mv;
E,=—>
° 2

Immediately after the collision the total kinetic energy of the system is equal to the
sum of the kinetic energy of the bullet and the ball:

2 2
E :mv’ EM:M;/ .

Their difference, converted into heat, was
AE=E,-(E,+E,).
It is the following part of the initial kinetic energy of the bullet:

_AE_, EntEy
EO EO
By using expressions for energies and velocities (quoted earlier) we get



Numerically:
p =92,8%.

Problem 2

Consider an infinite network consisting of resistors (resistance of each of them is r)
shown in Fig. 3. Find the resultant resistance R,; between points A and B.

Solution

It is easy to remark that after removing the left part of the network, shown in Fig. 4
with the dotted square, then we receive a network that is identical with the initial network (it
is result of the fact that the network is infinite).

A | | | | |
r r r
r r r
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Fig. 5



Algebraically this equivalence can be written as

1
RAB:r+1

1,1
r RAB
Thus

R —TR,, —r?=0.
This equation has two solutions:

R, =1(1%+/5)r.

The solution corresponding to “-“ in the above formula is negative, while resistance
must be positive. So, we reject it. Finally we receive

R = 1(1++/5)r.
Problem 3

Consider two identical homogeneous balls, A and B, with the same initial
temperatures. One of them is at rest on a horizontal plane, while the second one hangs on a
thread (Fig. 6). The same quantities of heat have been supplied to both balls. Are the final
temperatures of the balls the same or not? Justify your answer. (All kinds of heat losses are
negligible.)

Fig. 6
Solution

Fig. 7

As regards the text of the problem, the sentence “The same quantities of heat have
been supplied to both balls.” is not too clear. We will follow intuitive understanding of this



sentence, i.e. we will assume that both systems (A — the hanging ball and B — the ball resting
on the plane) received the same portion of energy from outside. One should realize, however,
that it is not the only possible interpretation.

When the balls are warmed up, their mass centers are moving as the radii of the balls
are changing. The mass center of the ball A goes down, while the mass center of the ball B
goes up. It is shown in Fig. 7 (scale is not conserved).

Displacement of the mass center corresponds to a change of the potential energy of the
ball in the gravitational field.

In case of the ball A the potential energy decreases. From the 1% principle of
thermodynamics it corresponds to additional heating of the ball.

In case of the ball B the potential energy increases. From the 1% principle of
thermodynamics it corresponds to some “losses of the heat provided” for performing a
mechanical work necessary to rise the ball. The net result is that the final temperature of the
ball B should be lower than the final temperature of the ball A.

The above effect is very small. For example, one may find (see later) that for balls
made of lead, with radius 10 cm, and portion of heat equal to 50 kcal, the difference of the
final temperatures of the balls is of order 10° K. For spatial and time fluctuations such small
quantity practically cannot be measured.

Calculation of the difference of the final temperatures was not required from the
participants. Nevertheless, we present it here as an element of discussion.

We may assume that the work against the atmospheric pressure can be neglected. It is
obvious that this work is small. Moreover, it is almost the same for both balls. So, it should
not affect the difference of the temperatures substantially. We will assume that such quantities
as specific heat of lead and coefficient of thermal expansion of lead are constant (i.e. do not
depend on temperature).

The heat used for changing the temperatures of balls may be written as

Q; =mcAt;, where i=AorB,

Here: m denotes the mass of ball, ¢ - the specific heat of lead and At; - the change of the
temperature of ball.

The changes of the potential energy of the balls are (neglecting signs):

AE; =mgroAt;, where i=A orB.

Here: g denotes the gravitational acceleration, r - initial radius of the ball, « - coefficient of
thermal expansion of lead. We assume here that the thread does not change its length.

Taking into account conditions described in the text of the problem and the
interpretation mentioned at the beginning of the solution, we may write:

Q=Q, - AAE,, fortheball A,
Q=0Q; + AAE;, fortheball B.

. I . . .
A denotes the thermal equivalent of work: A= 0.24%. In fact, A is only a conversion ratio

between calories and joules. If you use a system of units in which calories are not present, you
may omit A at all.



Thus

Q=(mc—Amgra)At,, fortheball A,
Q=(mc+ Amgra)At,, for the ball B

and
My=— 2 a2
mc — Amgroa mc + Amgro
Finally we get
At=At, —At, = — 2Agra Zgz 2Angra.
c’—(Agra) - m mc

(We neglected the term with «* as the coefficient o is very small.)

Now we may put the numerical values: Q=50 kcal, A~0.24 cal/J, g~9.8m/s’,

m =~ 47 kg (mass of the lead ball with radius equal to 10 cm), r=0.1 m, ¢ ~0.031cal/(g-K),
a ~29-10° K. After calculations we get At ~1.5-10° K.

Problem 4

Comment: The Organizing Committee prepared three theoretical problems. Unfortunately, at
the time of the 1% Olympiad the Romanian students from the last class had the entrance
examinations at the universities. For that Romania sent a team consisting of students from
younger classes. They were not familiar with electricity. To give them a chance the
Organizers (under agreement of the International Board) added the fourth problem presented
here. The students (not only from Romania) were allowed to chose three problems. The
maximum possible scores for the problems were: 1% problem — 10 points, 2" problem — 10
points, 3" problem — 10 points and 4™ problem — 6 points. The fourth problem was solved by
8 students. Only four of them solved the problem for 6 points.

A closed vessel with volume V, = 10 | contains dry air in the normal conditions (ty =
0°C, po =1 atm). In some moment 3 g of water were added to the vessel and the system was
warmed up to t = 100°C. Find the pressure in the vessel. Discuss assumption you made to
solve the problem.

Solution

The water added to the vessel evaporates. Assume that the whole portion of water
evaporated. Then the density of water vapor in 100°C should be 0.300 g/I. It is less than the
density of saturated vapor at 100°C equal to 0.597 g/l. (The students were allowed to use
physical tables.) So, at 100°C the vessel contains air and unsaturated water vapor only
(without any liquid phase).

Now we assume that both air and unsaturated water vapor behave as ideal gases. In
view of Dalton law, the total pressure p in the vessel at 100°C is equal to the sum of partial
pressures of the air p, and unsaturated water vapor p,:



P=Pa+P-

As the volume of the vessel is constant, we may apply the Gay-Lussac law to the air.

We obtain:
B (273+t]
pa - pO 273 -

The pressure of the water vapor may be found from the equation of state of the ideal

gas:

vaO _ m R
273+t u

where m denotes the mass of the vapor, « - the molecular mass of the water and R — the
universal gas constant. Thus,

m_ 273+t
pv =—R
H Vo
and finally
273+t m _ 273+t
P =P +—R :
2713 u VvV,
Numerically:

p=(1.366+0.516) atm ~1.88 atm.

Experimental problem
The following devices and materials are given:

Balance (without weights)
Calorimeter
Thermometer
Source of voltage
Switches

Wires

Electric heater
Stop-watch

. Beakers

10. Water

11. Petroleum

12. Sand (for balancing)

oSN~ wWN PR

Determine specific heat of petroleum. The specific heat of water is 1 cal/(g-°C). The
specific heat of the calorimeter is 0.092 cal/(g-°C).
Discuss assumptions made in the solution.



Solution

The devices given to the students allowed using several methods. The students used
the following three methods:

1. Comparison of velocity of warming up water and petroleum;
2. Comparison of cooling down water and petroleum;
3. Traditional heat balance.

As no weights were given, the students had to use the sand to find portions of petroleum
and water with masses equal to the mass of calorimeter.

First method: comparison of velocity of warming up

If the heater is inside water then both water and calorimeter are warming up. The heat
taken by water and calorimeter is:

Q, =m,c,At, + m_C.At,,

where: m,, denotes mass of water, m - mass of calorimeter, c - specific heat of water, c_-

specific heat of calorimeter, At,- change of temperature of the system water + calorimeter.
On the other hand, the heat provided by the heater is equal:

Q.= A?Tw

where: A — denotes the thermal equivalent of work, U — voltage, R — resistance of the heater,
71 — time of work of the heater in the water.
Of course,

Q1 = Qz-
Thus

U 2
A?rl =m,C,At; + m.C At .

For petroleum in the calorimeter we get a similar formula:

U 2
A?r2 =m,C,At, + m.C AL,.

where: m_ denotes mass of petroleum, c, - specific heat of petroleum, At, - change of
temperature of the system water + petroleum, z — time of work of the heater in the petroleum.

By dividing the last equations we get



r,  m,C,At +m.c At
T, MC,At, +mCAL,

It is convenient to perform the experiment by taking masses of water and petroleum equal
to the mass of the calorimeter (for that we use the balance and the sand). For

m, =m, =m,
the last formula can be written in a very simple form:

7, C,AL +CAL

T, C,At,+CAt,

Thus
c AT [ AL T,
C o ALY T, At )¢
or
k k
C. :—10W—[ ——1jcc,
k2 k2
where
kl:ﬁ and k, AL
(2} P

denote “velocities of heating” water and petroleum, respectively. These quantities can be
determined experimentally by drawing graphs representing dependence At,and At, on time
(7). The experiment shows that these dependences are linear. Thus, it is enough to take slopes
of appropriate straight lines. The experimental setup given to the students allowed
measurements of the specific heat of petroleum, equal to 0.53 cal/(g°-C), with accuracy about
1%.

Some students used certain mutations of this method by performing measurements at
At,= At, orat 7, =7,. Then, of course, the error of the final result is greater (it is additionally

affected by accuracy of establishing the conditions At,= At, orat 7, =7,).

Second method: comparison of velocity of cooling down

Some students initially heated the liquids in the calorimeter and later observed their
cooling down. This method is based on the Newton’s law of cooling. It says that the heat Q
transferred during cooling in time 7 is given by the formula:

Q=h(t-9)sr,

where: t denotes the temperature of the body, 9 - the temperature of surrounding, s — area of
the body, and h — certain coefficient characterizing properties of the surface. This formula is



correct for small differences of temperatures t—4 only (small compared to t and 4 in the
absolute scale).

This method, like the previous one, can be applied in different versions. We will
consider only one of them.

Consider the situation when cooling of water and petroleum is observed in the same
calorimeter (containing initially water and later petroleum). The heat lost by the system water
+ calorimeter is

AQ, =(m,cC, +m.C,)At,

where At denotes a change of the temperature of the system during certain period z,. For the

system petroleum + calorimeter, under assumption that the change in the temperature At is
the same, we have

AQ, =(m,c, +m., )At.

Of course, the time corresponding to At in the second case will be different. Let it be z,.
From the Newton's law we get

AQ, T

AQ, T, .

Thus

If we conduct the experiment at

then we get

T T
C, =—C, —[1——2)%.
Tl Tl

As cooling is rather a very slow process, this method gives the result with definitely
greater error.

Third method: heat balance

This method is rather typical. The students heated the water in the calorimeter to certain
temperature t, and added the petroleum with the temperature t,. After reaching the thermal

equilibrium the final temperature was t. From the thermal balance (neglecting the heat losses)
we have



(mwcw + mccc)(tl _t) = mpcp(t _tz)-

If, like previously, the experiment is conducted at

m, =m,=m,,
then

t, —t

C, :(CW+C°)t—t2 :

In this methods the heat losses (when adding the petroleum to the water) always played a
substantial role.

The accuracy of the result equal or better than 5% can be reached by using any of the
methods described above. However, one should remark that in the first method it was easiest.
The most common mistake was neglecting the heat capacity of the calorimeter. This mistake
increased the error additionally by about 8%.

Marks

No marking schemes are present in my archive materials. Only the mean scores are
available. They are:

Problem # 1 7.6 points
Problem # 2 7.8 points (without the Romanian students)
Problem # 3 5.9 points
Experimental problem 7.7 points
Thanks

The author would like to express deep thanks to Prof. Jan Mostowski and Dr. Yohanes
Surya for reviewing the text and for valuable comments and remarks.
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