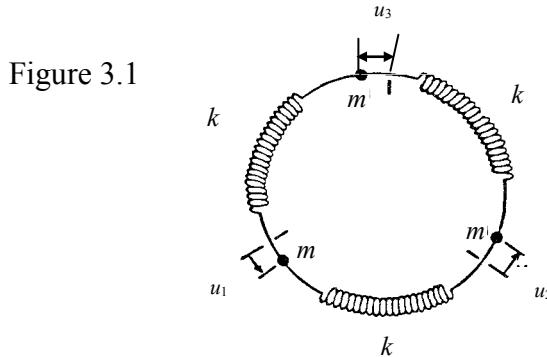


Q3

Three particles, each of mass  $m$ , are in equilibrium and joined by unstretched massless springs, each with Hooke's Law spring constant  $k$ . They are constrained to move in a circular path as indicated in Figure 3.1.



(i) If each mass is displaced from equilibrium by small displacements  $u_1$ ,  $u_2$  and  $u_3$  respectively, write down the equation of motion for each mass.

(ii) Verify that the system has simple harmonic solutions of the form

$$u_n = a_n \cos \omega t,$$

with accelerations,  $(-\omega^2 u_n)$  where  $a_n$  ( $n = 1, 2, 3$ ) are constant amplitudes, and  $\omega$ , the angular frequency, can have 3 possible values,

$$\omega_o \sqrt{3}, \omega_o \sqrt{3} \text{ and } 0. \text{ where } \omega_o^2 = \frac{k}{m}.$$

(iii) The system of alternate springs and masses is extended to  $N$  particles, each mass  $m$  is joined by springs to its neighbouring masses. Initially the springs are unstretched and in equilibrium. Write down the equation of motion of the  $n$ th mass ( $n = 1, 2, \dots, N$ ) in terms of its displacement and those of the adjacent masses when the particles are displaced from equilibrium.

**Show that**  $u_n(t) = a_s \sin\left(\frac{2ns\pi}{N} + \phi\right) \cos \omega_s t,$

are oscillatory solutions where  $s = 1, 2, \dots, N$ ,  $n = 1, 2, \dots, N$  and where  $\phi$  is an arbitrary phase, providing the angular frequencies are given by

$$\omega_s = 2\omega_o \sin\left(\frac{s\pi}{N}\right),$$

where  $a_s$  ( $s = 1, \dots, N$ ) are constant amplitudes independent of  $n$ .

State the range of possible frequencies for a chain containing an infinite number of masses.

(iv) Determine the ratio

$$u_n / u_{n+1}$$

for large  $N$ , in the two cases:

- (a) low frequency solutions
- (b)  $\omega = \omega_{\max}$ , where  $\omega_{\max}$  is the maximum frequency solution.

Sketch typical graphs indicating the displacements of the particles against particle number along the chain at time  $t$  for cases (a) and (b).

(v) If one of the masses is replaced by a mass  $m' \ll m$  estimate any major change one would expect to occur to the angular frequency distribution.

Describe qualitatively the form of the frequency spectrum one would predict for a diatomic chain with alternate masses  $m$  and  $m'$  on the basis of the previous result.

Reminder

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$

$$2 \sin^2 A = 1 - \cos 2A$$