

Solution

a) The block moves along a horizontal circle of radius $R \sin \alpha$. The net force acting on the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force exerted by the wall N , the frictional force S and the weight mg is equal to the resultant: $m\omega^2 R \sin \alpha$.

The connections between the horizontal and vertical components:

$$m\omega^2 R \sin \alpha = N \sin \alpha - S \cos \alpha,$$

$$mg = N \cos \alpha + S \sin \alpha.$$

The solution of the system of equations:

$$S = mg \sin \alpha \left(1 - \frac{\omega^2 R \cos \alpha}{g} \right),$$

$$N = mg \left(\cos \alpha + \frac{\omega^2 R \sin^2 \alpha}{g} \right).$$

The block does not slip down if

$$\mu_a \geq \frac{S}{N} = \sin \alpha \cdot \frac{1 - \frac{\omega^2 R \cos \alpha}{g}}{\cos \alpha + \frac{\omega^2 R \sin^2 \alpha}{g}} = \frac{3\sqrt{3}}{23} = 0.2259.$$

In this case there must be at least this friction to prevent slipping, i.e. sliding down.

b) If on the other hand $\frac{\omega^2 R \cos \alpha}{g} > 1$ some

friction is necessary to prevent the block to slip upwards. $m\omega^2 R \sin \alpha$ must be equal to the resultant of forces S , N and mg . Condition for the minimal coefficient of friction is (Fig. 8):

$$\begin{aligned} \mu_b &\geq \frac{S}{N} = \sin \alpha \cdot \frac{\frac{\omega^2 R \cos \alpha}{g} - 1}{\cos \alpha + \frac{\omega^2 R \sin^2 \alpha}{g}} = \\ &= \frac{3\sqrt{3}}{29} = 0.1792. \end{aligned}$$

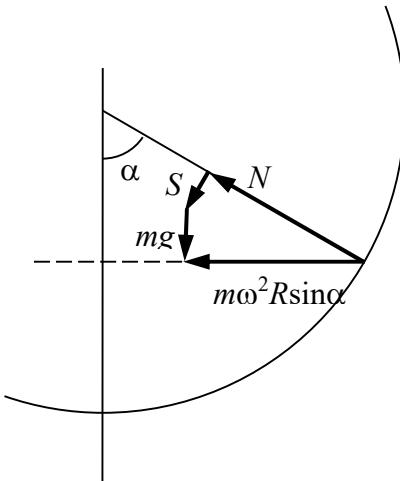
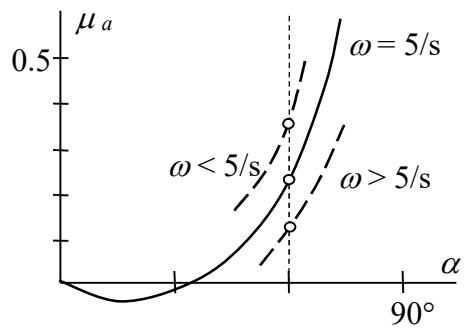
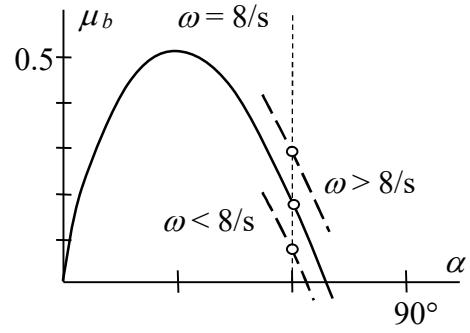


Figure 8

c) We have to investigate μ_a and μ_b as functions of α and ω in the cases a) and b) (see Fig. 9/a and 9/b):



Figure



Figure

In case a): if the block slips upwards, it comes back; if it slips down it does not return. If ω increases, the block remains in equilibrium, if ω decreases it slips downwards.

In case b): if the block slips upwards it stays there; if the block slips downwards it returns. If ω increases the block climbs upwards, if ω decreases the block remains in equilibrium.