

Using the last result we can calculate

$$a = a_x = -a_y = \frac{m_1}{m_1 + m_2} g,$$

$$T_2 = T_1 = \frac{m_2 m_1}{m_1 + m_2} g.$$

Numerical results:

$$a = a_x = \frac{3}{5} \cdot 9.81 \text{ m s}^{-2} = 5.89 \text{ m s}^{-2},$$

$$T_1 = T_2 = 1.18 \text{ N}.$$

Problem 2. Water of mass m_2 is contained in a copper calorimeter of mass m_1 . Their common temperature is t_2 . A piece of ice of mass m_3 and temperature $t_3 < 0^\circ\text{C}$ is dropped into the calorimeter.

- Determine the temperature and masses of water and ice in the equilibrium state for general values of m_1 , m_2 , m_3 , t_2 and t_3 . Write equilibrium equations for all possible processes which have to be considered.
- Find the final temperature and final masses of water and ice for $m_1 = 1.00 \text{ kg}$, $m_2 = 1.00 \text{ kg}$, $m_3 = 2.00 \text{ kg}$, $t_2 = 10^\circ\text{C}$, $t_3 = -20^\circ\text{C}$.

Neglect the energy losses, assume the normal barometric pressure. Specific heat of copper is $c_1 = 0.1 \text{ kcal/kg}\cdot^\circ\text{C}$, specific heat of water $c_2 = 1 \text{ kcal/kg}\cdot^\circ\text{C}$, specific heat of ice $c_3 = 0.492 \text{ kcal/kg}\cdot^\circ\text{C}$, latent heat of fusion of ice $l = 78,7 \text{ kcal/kg}$. Take $1 \text{ cal} = 4.2 \text{ J}$.

Solution:

We use the following notation:

- t temperature of the final equilibrium state,
- $t_0 = 0^\circ\text{C}$ the melting point of ice under normal pressure conditions,
- M_2 final mass of water,
- M_3 final mass of ice,
- $m'_2 \leq m_2$ mass of water, which freezes to ice,
- $m'_3 \leq m_3$ mass of ice, which melts to water.

- Generally, four possible processes and corresponding equilibrium states can occur: