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Fig. 2 
 
 We will use notation shown in Fig. 2.  
 
 As no horizontal force acts on the system ball + bullet, the horizontal component of 
momentum of this system before collision and after collision must be the same: 
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From conditions described in the text of the problem it follows that 
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 After collision both the ball and the bullet continue a free motion in the gravitational 
field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of 
the bullet are continued for the same time: 
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m    v0 v – horizontal component of the velocity 
of the bullet after collision 
V – horizontal component of the velocity 
of the ball after collision 



 
It is time of free fall from height h. 
 The distances passed by the ball and bullet during time t are: 
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respectively. Thus 
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Finally: 
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Numerically: 

d = 100 m. 
 
 The total kinetic energy of the system was equal to the initial kinetic energy of the 
bullet: 
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Immediately after the collision the total kinetic energy of the system is equal to the 

sum of the kinetic energy of the bullet and the ball: 
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Their difference, converted into heat, was 
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It is the following part of the initial kinetic energy of the bullet: 
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By using expressions for energies and velocities (quoted earlier) we get 
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Numerically: 

 p = 92,8%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


