VRML 98

Introduction to VRML 97

Lecturer

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center

Tutorial notes sections

Abstract

Preface

Lecturer biography

Using the VRML examples
Using the JavaScript examples
Using the Java examples
Tutorial slides

Introduction to VRML 97

Abstract

VRML (the Virtual Reality Modeling Language) has emerged as the de facto standard for describing
3-D shapes and scenery on the World Wide Web. VRML'’s technology has very broad applicability,
including web-based entertainment, distributed visualization, 3-D user interfaces to remote web
resources, 3-D collaborative environments, interactive simulations for education, virtual museums,
virtual retail spaces, and more. VRML is a key technology shaping the future of the web.

Participants in this tutorial will learn how to use VRML 97 (a.k50 VRML VRML 2.Q andMoving

Worldsg to author their own 3-D virtual worlds on the World Wide Web. Participants will learn VRML
concepts and terminology, and be introduced to VRML's text format syntax. Participants also will learn
tips and techniques for increasing performance and realism. The tutorial includes numerous VRML
examples and information on where to find out more about VRML features and use.

Introduction to VRML 97

Preface

Welcome to théntroduction to VRML 97utorial notes! These tutorial notes have been written to
give you a quick, practical, example-driven overviewW BIML 97 the Web’s Virtual Reality
Modeling Language. To do this, I've included over 500 pages of tutorial material with nearly 200
images and over 100 VRML examples.

To use these tutorial notes you will need an HTML Web browser with support for viewing VRML
worlds. An up to date list of available VRML browsing and authoring software is available at:

The VRML Repository
(http://vrml.sdsc.edu)

What's included in these notes
These tutorial notes primarily contain two types of information:

1. General information, such as this preface
2. Tutorial slides and examples

The tutorial slides are arranged as a sequence of 500+ hyper-linked pages containing VRML
syntax notes, VRML usage comments, or images of sample VRML worlds. Clicking on a sample
world’s image, or the file name underneath it, loads the VRML world into your browser for you to
examine yourself.

You can view the text for any of the VRML worlds using a text editor and see how | created a
particular effect. In most cases, the VRML files contain extensive comments providing
information about the techniques the file illustrates.

The tutorial notes provide a necessarily terse overview of VRML. | recommend that you invest in
one of the VRML books on the market to get thorough coverage of the language. | am a co-author
of one such VRML bookThe VRML 2.0 SourcebooBeveral other good VRML books are on the
market as well.

A word about VRML versions

VRML has evolved through several versions of the language, starting way back in late 1994.
These tutorial notes cov¥iRML 97 the latest version of the language. To provide context, the
following table provides a quick overview of these VRML versions and the names they have
become known by.

Version Released Comments

VRML May 1995 Begun in late 1994, the first version of VRML was largely based upon

1.0 theOpen Inventofile format developed by Silicon Graphics Inc. The
VRML 1.0 specification was completed in May 1995 and included
support for shape building, lighting, and texturing.

VRML 1.0 browser plug-ins became widely available by late 1995,
though few ever supported the full range of features defined by the
VRML 1.0 specification.

VRML January As vendors began producing VRML 1.0 browsers, a number of

1.0c 1996 ambiguities in the VRML 1.0 specification surfaced. These problems
were corrected in a new VRML 1.0c (clarified) specification released in
January 1996. No new features were added to the language in VRML
1.0c.

VRML canceled In late 1995, discussion began on extensions to the VRML 1.0

1.1 specification. These extensions were intended to address language
features that made browser implementation difficult or inefficient. The
extended language was tentatively dubbed VRML 1.1. These
enhancements were later dropped in favor of forging ahead on VRML
2.0 instead.

No VRML 1.1 browsers exist.

Moving January VRML 1.0 included features for building static, unchanging worlds
Worlds 1996 suitable for architectural walk-throughs and some scientific
visualization applications. To extend the language to support animation
and interaction, the VRML architecture group made a call for proposals
for a language redesign. Silicon Graphics, Netscape, and others worked
together to create thdoving Worldsproposal, submitted in January
1996. That proposal was later accepted and became the starting point for
developing VRML 2.0. The final VRML 2.0 language specification is
still sometimes referred to as the Moving Worlds specification, though it
differs significantly from the original Moving Worlds proposal.

VRML August After seven months of intense effort by the VRML community, the

2.0 1996 Moving Worlds proposal evolved to become the final VRML 2.0
specification, released in August 1996. The new specification
redesigned the VRML syntax and added an extensive set of new
features for shape building, animation, interaction, sound, fog,
backgrounds, and language extensions.

While multiple VRML 2.0 browsers exist today, as of this writing, none
arecomplete All of the browsers are missing a few features.

Fortunately, most of the missing features are obscure aspects of VRML.

VRML September In early 1997, efforts got under way to present the VRML 2.0

97 1997 specification to the International Standards Organization (ISO) which
oversees most of the major language specifications in use in the
computing community. The ISO version of VRML 2.0 was reviewed
and the specification significantly rewritten to clarify issues. A few
minor changes to the language were also made. The final ISO VRML
was dubbeRML 97 The VRML 97 specification features finalized in
March 1997, while the specification’s text finalized in September 1997.

Most major VRML 2.0 browsers are now VRML 97 browsers.

VRML 1.0 and VRML 2.0 differ radically in syntax and features. A VRML 1.0 browser cannot
display VRML 2.0 worlds. Most VRML 2.0 browsers, however, can display VRML 1.0 worlds.

VRML 97 differs in a few minor ways from VRML 2.0. In most cases, a VRML 2.0 browser will
be able to correctly display VRML 97 files. However, for 100% accuracy, you should have a
VRML 97 compliant browser for viewing the VRML files contained within these tutorial notes.

How | created these tutorial notes

These tutorial notes were developed primarily on Silicon Graphics High Impact UNIX
workstations. HTML and VRML text was hand-authored using a text editor. A Perl program script
was used to process raw tutorial notes text to produce the 500+ individual HTML files, one per
tutorial slide.

HTML text was displayed using Netscape Navigator 3.01 on Silicon Graphics and PC systems.
Colors were checked for viewability in 24-bit, 16-bit, and 8-bit display modes on a PC. Text sizes
were chosen for viewability at a normal 12 point font on-screen, and at an 18 point font for
presentation during the tutorial. The large text, white-on-black colors, and terse language are used
to insure that slides are readable when displayed for the tutorial audience at the conference.

VRML worlds were displayed on Silicon Graphics systems using the Silicon Graphics Cosmo
Player 1.02 VRML 97 compliant browser for Netscape Navigator. The same worlds were
displayed on PC systems using three different VRML 2.0 compliant browsers for Netscape
Navigator: Silicon Graphics Cosmo Player 2.0 beta 1, Intervista WorldView 2.0, and Newfire
Torch beta.

Texture images were created using Adobe PhotoShop 4.0 on a PC with help from KAI's
PowerTools 3.0 from MetaTools. Image processing was also performed using the Image Tools
suite of applications for UNIX workstations from the San Diego Supercomputer Center.

PDF tutorial notes for printing were created by dumping individual tutorial slides to PostScript on
a Silicon Graphics workstation. The PostScript was transferred to a PC where it was converted to
PDF and assembled into a single PDF file using Adobe’s Distiller and Exchange.

Use of these tutorial notes
| am often asked if there are any restrictions on use of these tutorial notes. The answer is:

These tutorial notes are copyright (c) 1997 by David R. Nadeau. Users and possessors of
these tutorial notes are hereby granted a nonexclusive, royalty-free copyright and design
patent license to use this material in individual applications. License is not granted for
commercial resale, in whole or in part, without prior written permission from the authors.
This material is provided "AS 1S" without express or implied warranty of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own VRML
tutorial. You may translate these notes into other languages and you may post copies of these notes
on your own Web site, as long as the above copyright notice is included as well. You may not,
however, sell these tutorial notes for profit or include them on a CD-ROM or other media product
without written permission.

If you use these tutorial notes, | ask that you:

1. Give me credit for the original material
2. Tell me since | like hearing about the use of my material!

If you find bugs in the notes, please tell me. | have worked hard to try and make the notes
bug-free, but if something slipped by, I'd like to fix it before others are confused by my mistake.

Contact

David R. Nadeau
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

Introduction to VRML 97

Lecturer biography

® David R. Nadeau
Mr. Nadeau is a principal scientist at the San Diego Supercomputer Center (SDSC), specializing in
scientific visualization and virtual reality. He is an author of technical papers on graphics and
VRML and a co-author of two books on VRMILHe VRML SourcebopkndThe VRML 2.0
Sourcebook He has taught VRML courses at conferences including SIGGRAPH 96-97, WebNet
96-97, VRML 97, Eurographics 97, and Visualization 97, and is the creaitvedf RML
Repositorya principal Web site for information on VRML software and documentation. Mr.
Nadeau co-chairedRML 95 the first conference on VRML, and til&@ML Behavior Workshop
the first workshop on behavior support for VRML. He is SDSC'’s representative WRikié
Consortium

Introduction to VRML 97

Using the VRML examples

These tutorial notes include over a hundred VRML files. Almost all of the provided worlds are
linked to from the tutorial slides pages.

VRML support

As noted in the preface to these tutorial notes, this tutorial covers VRML 97, the ISO standard
version of VRML 2.0. There are only minor differences between VRML 97 and VRML 2.0, so
any VRML 97 or VRML 2.0 browser should be able to view any of the VRML worlds contained
within these tutorial notes.

The VRML 97 (and VRML 2.0) language specifications are complex and filled with powerful
features for VRML content authors. Unfortunately, the richness of the language makes
development of a robust VRML browser difficult. As of this writing, there are nearly a dozen
VRML browsers on the market, but none support all features in VRML 97 (despite press releases
to the contrary).

| am reasonably confident that all VRML examples in these tutorial notes are correct, though of
course | could have missed something. Chances are that if one of the VRML examples doesn’t
look right, the problem is with your VRML browser and not with the example. It's a good idea to
read carefully the release notes for your browser to see what features it does and does not support.
It's also a good idea to regularly check your VRML browser vendor’'s Web site for updates. The
industry is moving very fast and often produces new browser releases every month or so.

As of this writing, | have found that Silicon Graphics (SGI) Cosmo Player for PCs and SGI UNIX
workstations is the most complete and robust VRML 97 browser available. It is this browser that |
used for most of my VRML testing. On the Macintosh and non-SGI UNIX workstations, | was
unable to find a usable VRML browser with which to test the VRML tutorial examples.

What if my VRML browser doesn’t support a VRML feature?

If your VRML browser doesn’t support a particular VRML 97 feature, then those worlds that use
the feature will not load properly. Some VRML browsers display an error window when they
encounter an unsupported feature. Other browsers silently ignore features they do not support yet.

When your VRML browser encounters an unsupported feature, it may elect to reject the entire
VRML file, or it may load only those parts of the world that it understands. When only part of a
VRML file is loaded, those portions of the world that depend upon the unsupported features will
display incorrectly. Shapes may be in the wrong position, have the wrong size, be shaded
incorrectly, or have the wrong texture colors. Animations may not run, sounds may not play, and
interactions may not work correctly.

For most worlds | have captured an image of the world and placed it on the tutorial slide page to

give you an idea of what the world should look like. If your VRML browser’s display doesn’t look
like the picture, chances are the browser is missing support for one or more features used by the
world. Alternately, the browser may simply have a bug or two.

In general, VRML worlds later in the tutorial use features that are harder for vendors to implement
than those features used earlier in the tutorial. So, VRML worlds at the end of the tutorial are more
likely to fail to load properly than VRML worlds early in the tutorial.

Introduction to VRML 97

Using the JavaScript examples

These tutorial notes include several VRML worlds that use JavaScript program scripts within
Script nodes. The text for these program scripts is included directly withsctipe node
within the VRML file.

JavaScript support

The VRML 97 specification does not require that a VRML browser support the use of JavaScript
to create program scripts feeript nodes. Fortunately, most VRML browsers do support
JavaScript program scripts, though you should check your VRML browser’s release notes to be
sure it is JavaScript-enabled.

Some VRML browsers, particularly those from Silicon Graphics, support a derivative of
JavaScript callef¥RMLscript The language is essentially identical to JavaScript. Because of
Silicon Graphics’ strength in the VRML market, most VRML browser vendors have modified
their VRML browsers to support VRMLscript as well as JavaScript.

JavaScript and VRMLscript program scripts are included as text withinl thield of aScript
node. To indicate the program script’s language, the field value starts with githedript:
for JavaScript, orvimiscript: " for VRMLscript, like this:

Script {
field SFFloat bounceHeight 1.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

url " vrmliscript:
function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] =;
value_changed[2] = 0.0;
}II
}
For compatibility with Silicon Graphics VRML browsers, all JavaScript program script examples
in these notes are tagged asn'script: ", like the above example. If you have a VRML browser

that does not support VRMLscript, but does support JavaScript, then you can convert the examples
to JavaScript simply by changing the tagnlscript: " to "javascript: " like this:

Script {
field SFFloat bounceHeight 1.0
eventln SFFloat set_fraction
eventOut SFVec3f value_changed

url " javascript:
function set_fraction(frac, tm) {

y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] =y;

value_changed[2] = 0.0;

}
What if my VRML browser doesn’t support JavaScript?

If your VRML browser doesn’t support JavaScript or VRMLscript, then those worlds that use
these languages will produce an error when loaded into your VRML browser. This is unfortunate
since JavaScript or VRMLscript is an essential feature that all VRML browsers should support. |
recommend that you consider getting a different VRML browser.

If you can’t get another VRML browser right now, there are only a few VRML worlds in these
tutorial notes that you will not be able to view. Those worlds are contained as examples in the
following tutorial sections:

O Introducing script use
O Writing program scripts with JavaScript
O Creating new node types

So, if you don’t have a VRML browser with JavaScript or VRMLscript support, just skip the
above sections and everything will be fine.

Introduction to VRML 97

Using the Java examples

These tutorial notes include a few VRML worlds that use Java program scripts Setiptin

nodes. The text for these program scripts is included in filesjaith file name extensions.

Before use, you will need to compile these Java program scripts to Java byte-code contained in
files with .class file name extensions.

Java support

The VRML 97 specification does not require that a VRML browser support the use of Java to
create program scripts ferript nodes. Fortunately, most VRML browsers do support Java
program scripts, though you should check your VRML browser’s release notes to be sure it is
Java-enabled.

In principle, all Java-enabled VRML browsers identically support the VRML Java API as
documented in the VRML 97 specification. Similarly, in principle, a compiled Java program script
using the VRML Java API can be executed on any type of computer within any brand of VRML
browser

In practice, neither of these ideal cases occurs. The Java language is supported somewhat
differently on different platforms, particularly as the community transitions from Java 1.0 to Java
1.1 and beyond. Additionally, the VRML Java API is implemented somewhat differently by
different VRML browsers, making it difficult to insure that a compiled Java class file will work

for all VRML browsers available now and in the future.

Because of Java incompatibilities observed with current VRML browsers, | have elected to not
include compiled Java class files in these tutorial notes. Instead, | include the uncompiled Java
program scripts. Before use, you will need to compile the Java program scripts yourself on your
platform with your VRML browser and your version of the Java language and support tools.

Compiling Java
To compile the Java examples, you will need:

O The VRML Java API class files for your VRML browser
O A Java compiler

All VRML browsers that support Java program scripts supply their own set of VRML Java API
class files. Typically these are automatically installed when you install your VRML browser.

There are multiple Java compilers available for most platforms. Sun Microsystems provides the
Java Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The JDK
includes thgavac compiler and instructions on how to use it. Multiple commercial Java
development environments are available from Microsoft, Silicon Graphics, Symantec, and others.

An up to date list of available Java products is available at Gamelan’'s Web site at
http://www.gamelan.com.

Once you have the VRML Java API class files and a Java compiler, you will need to compile the
supplied Java files. Unfortunately, | can’t give you explicit directions on how to do this. Each
platform and Java compiler is different. You'll have to consult your software’s manuals.

Once compiles, place thetass files in theslides folder along with the other tutorial slides.
Now, when you click on a VRML world using a Java program script, the class files will be
automatically loaded and the example will run.

What if my VRML browser doesn’t support Java ?

If your VRML browser doesn’t support Java, then those worlds that use Java will produce an error
when loaded into your VRML browser. This is unfortunate since Java is an essential feature that
all VRML browsers should support. | recommend that you consider getting a different VRML
browser.

What if | don’t compile the Java program scripts?

If you have a VRML browser that doesn’t support Java, or if if you don’t compile the Java
program scripts, those worlds that use Java will produce an error when loaded into your VRML
browser. Fortunately, | have kept Java use to a minimum. In fact, Java program scripts are only
used in theéNriting program scripts with Javaection of the tutorial slides. So, if you don’t

compile the Java program scripts, then just skip the VRML examples in that section and
everything will be fine.

Introduction to VRML 97

Table of contents

Morning

Part 1 - Shapes, geometry, and appearance
Welcome!
Introducing VRML
Building a VRML world
Building primitive shapes
Transforming shapes
Controlling appearance with materials
Grouping nodes
Naming nodes
Summary examples

Part 2 - Animation, sensors, and geometry
Introducing animation
Animating transforms
Sensing viewer actions
Building shapes out of points, lines, and faces
Building elevation grids
Building extruded shapes

Controlling color on coordinate-based geometry

Controlling shading on coordinate-based geometry
Summary examples
Afternoon

Part 3 - Textures, lights, and environment
Mapping textures
Controlling how textures are mapped
Lighting your world
Adding backgrounds
Adding fog
Adding sound
Controlling the viewpoint
Controlling navigation
Sensing the viewer
Summary examples

Part 4 - Scripts and prototypes
Controlling detail
Introducing script use
Writing program scripts with JavaScript
Writing program scripts with Java
Creating new node types
Providing information about your world

Summary examples

Miscellaneous extensions

Conclusion

1
Welcomel!

Introduction to VRML 97
Schedule for the day

Tutorial scope

2

Welcome!

Introduction to VRML 97
Welcome to the tutorial!
Dave Nadeau

San Diego Supercomputer Center
nadeau@sdsc.edu

Part 1

Part 2

Part 3

Part 4

3

Welcome!

Schedule for the day

Shapes, geometry, appearance
Break

Animation, sensors, geometry
Lunch

Textures, lights, environment
Break

Scripts, prototypes

4

Welcome!

Tutorial scope

o This tutorial covers VRML 97
o The ISO standard revision of VRML 2.0

« You will learn:
« VRML file structure
« Concepts and terminology
« Most shape building syntax
« Most sensor and animation syntax
« Most program scripting syntax
« Where to find out more

5
Introducing VRML

What is VRML?

What do | need to use VRML?

Examples

How can VRML be used on a Web page?

What do | need to develop in VRML?

Should | use a text editor?

Should I use a world builder?

Should | use a 3D modeler and format translator?
Should | use a shape generator?

How do | get VRML software?

6
Introducing VRML

What is VRML?
« VRML is:
« A simple text language for describing 3-D
shapes and interactive environments

« VRML text files use a.wrl extension

7
Introducing VRML

What do | need to use VRML?

« YOu can view VRML files using aVRML
browser
« A VRML helper-application
« A VRML plug-in to an HTML browser

« YOu can view VRML files from your local
hard disk, or from the Internet

8
Introducing VRML
Examples

[temple.wrl] [cutplane.wrl]

[spiral.wrl] [floater.wrl |

9
Introducing VRML

How can VRML be used on a Web page?

. Fill Web page [boxes.wrl |
« Embed into Web page | boxesl.htm |
« Fill Web page frame [boxes2.htm |

« Embed into Web page frame [boxes3.htm]
« Embed multiple times | boxes4.htm |

10
Introducing VRML

What do | need to develop in VRML?

« YOu can construct VRML files using:
o A text editor
« A world builder application
« A 3D modeler and format translator
« A shape generator (like a Perl script)

11
Introducing VRML
Should | use a text editor?

« Pros:
« No new software to buy
« Access to all VRML features
« Detailed control of world efficiency

« Cons:
« Hard to author complex 3D shapes
« Requires knowledge of VRML syntax

12
Introducing VRML
Should | use a world builder?

 Pros:
« Easy 3-D drawing and animating user
Interface
o Little need to learn VRML syntax

« Cons:
« May not support all VRML features
« May not produce most efficient VRML

13
Introducing VRML
Should | use a 3D modeler and format translator?

 Pros:
 Very powerful drawing and animating
features
« Can make photo-realistic images too

« Cons:
« May not support all VRML features
« May not produce most efficient VRML
« Not designed for VRML
. Often a one-way path from 3D modeler
Into VRML
« Easy to make shapes that are too complex

14
Introducing VRML
Should | use a shape generator?

« Pros:
« Easy way to generate complex shapes
 Fractal mountains, logos, etc.
« Generate VRML from CGI Perl scripts
« Common to extend science applications to
generate VRML

« Cons:
« Only suitable for narrow set of shapes
« Best used with other software

15
Introducing VRML

How do | get VRML software?
« The VRML Repository at:
http://vrml.sdsc.edu

maintains uptodate information and links for:

Browser software Sound libraries
World builder software Obiject libraries
File translators Specifications
Image editors Tutorials

Java authoring tools Books

Texture libraries and more...

16

17
Building a VRML world

VRML file structure

A sample VRML file
Understanding the header
Understanding UTF8
Using comments

Using nodes

Using node type names
Using fields and values
Using field names

Using fields and values

Summary

18
Building a VRML world

VRML file structure

« VRML files contain:
« The file header
« Comments notes to yourself
« Nodes- nuggets of scene information
« Fields - node attributes you can change
 Values- attribute values
« More. . .

19
Building a VRML world

A sample VRML file

#VRML V2.0 utf8
A Cylinder
Shape {
appearance Appearance {
material Material { }
}
geometry Cylinder {
height 2.0
radius 1.5

}

20
Building a VRML world
Understanding the header

#VRML V2.0 utf8
o #VRML File contains VRML text

« V2.0 : Text conforms to version 2.0 syntax
o utfs : Text uses UTF8 character set

21
Building a VRML world

Understanding UTF8
e utf8 IS an International character set standard

o utf8 Stands for:
« UCS (Universal Character Set)
Transformation Format, 8-bit

« Encodes 24,000+ characters for many
languages
« ASCII Is a subset

22
Building a VRML world
Using comments

A Cylinder

« Comments start with a number-sign £) and
extend to the end of the line

23
Building a VRML world
Using nodes

Cylinder {
}

« Nodes describe shapes, lights, sounds, etc.

« Every node has:
« A node typgshape, Cylinder , etc.)
« A pair of curly-braces
« Zero or more fields inside the curly-braces

24
Building a VRML world
Using node type names

« Node type names are€ase sensitive
« Each word starts with an upper-case
character
« The rest of the word is lower-case

« SOme examples:

Appearance ElevationGrid
Cylinder FontStyle
Material ImageTexture

Shape IndexedFaceSet

25
Building a VRML world
Using fields and values

Cylinder {
height 2.0
radius 1.5

}

« Fields describe node attributes

« Every field has:
o A field name (height , radius , etc.)
« A data type (float, integer, etc.)
« A default value

26
Building a VRML world
Using field names

« Field names arecase sensitive
« The first word starts with a lower-case
character
« Each additional word starts with an
upper-case character
« The rest of the word is lower-case

« SOme examples:

appearance coordindex
height difftuseColor
material fontStyle

radius textureTransform

27
Building a VRML world
Using fields and values

« Different node types have different fields

. Fields are optional
. A default value is used if a field is not given

o Fields can be listed in any order
o The order doesn’t affect the node

28
Building a VRML world
Summary

« The file header gives the version and encoding
« Nodes describe scene content
. Fields and values specify node attributes

« Everything is case sensitive

29
Building primitive shapes

Motivation

Example

Syntax: Shape

Specifying appearance
Specifying geometry

Syntax: Box

Syntax: Cone

Syntax: Cylinder

Syntax: Sphere

Syntax: Text

Syntax: FontStyle

Syntax: FontStyle

Syntax: FontStyle

Syntax: FontStyle

A sample primitive shape

A sample primitive shape

Building multiple shapes

A sample file with multiple shapes
A sample file with multiple shapes

Summary

30
Building primitive shapes

Motivation

« Shapesare the building blocks of a VRML
world

« Primitive Shapesre standard building blocks:
« BOX
« Cone
« Cylinder
« Sphere
o Text

31
Building primitive shapes

Example

[prim.wrl]

32
Building primitive shapes

Syntax: Shape

« A shape node builds a shape
e appearance - color and texture
e geometry - form, or structure

Shape {
appearance . . .
geometry

}

33
Building primitive shapes

Specifying appearance

« Shape appearance is described @ppearance
nodes

« For now, we’ll use nodes to create a shaded
white appearance:

Shape {
appearance Appearance {
material Material { }
}

geometry

}

34
Building primitive shapes

Specifying geometry

« Shape geometry is built withgeometrynodes:

Box {...}
Cone {...}
Cylinder {...}
Sphere {...}
Text {...}

« Geometry node fields control dimensions

« Dimensions usually in meters, but can be
anything

35
Building primitive shapes

Syntax: Box

« A Box geometry node builds a box
o size - width, height, depth

Shape {
appearance Appearance {
material Material { }

geometry Box {
size 2.02.02.0

}
[box.wrl] }

36
Building primitive shapes

Syntax: Cone

« A Cone geometry node builds an upright cone
o height and bottomRadius - cylinder size
e bottom andside - parts on or off

Shape {
appearance Appearance {
material Material { }

geometry Cone {
height 2.0
bottomRadius 1.0

[cone.wrl] pottom TRYE

37
Building primitive shapes

Syntax: Cylinder

« A Cylinder geometry node builds an upright
cylinder
o height andradius - cylinder size
e bottom , top , @ndside - parts on or off

Shape {

appearance Appearance {
material Material { }

}

geometry Cylinder {
height 2.0
radius 1.0
bottom TRUE
top TRUE
side TRUE

[cyl.wrl]

38
Building primitive shapes

Syntax: Sphere

« A Sphere geometry node builds a sphere
o radius - Sphere radius

Shape {
appearance Appearance {
material Material { }

geometry Sphere {
radius 1.0

}
[sphere.wrl] }

39
Building primitive shapes

Syntax: Text

« A Text geometry node builds text
e string - text to build
o fontStyle - font control

Shape {
appearance Appearance {
material Material { }

geometry Text {

string ["Text",

"Shape" |
fontStyle FontStyle {
[text.wrl] style "BOLD"
}

}

}

40
Building primitive shapes

Syntax: FontStyle

o A FontStyle node describes a font
o family - SERIF, SANS O TYPEWRITER
e style - BOLQ ITALIC , BOLDITALIC, OF PLAIN

Shape {
appearance Appearance {
material Material { }

geometry Text {
string . . .
fontStyle FontStyle {

family "SERIF"
[textfont.wrl | style’ "BOLD"

}
}
}

41
Building primitive shapes

Syntax: FontStyle

o A FontStyle node describes a font
o size - character height
e spacing - row/column spacing

Shape {
Medmm appearance Appearance {
material Material { }

Lar ge }éeometry Text {

string . . .

fontStyle FontStyle {

[textsize.wrl] gggciné.g .

42
Building primitive shapes

Syntax: FontStyle

o A FontStyle node describes a font
e justify - FIRST, BEGIN, MIDDLE, Of END

Shape {
appearance Appearance {
material Material { }

geometry Text {
string . . .
fontStyle FontStyle {

[textjust.wrl] | justify "BEGIN"

}
}

43
Building primitive shapes

Syntax: FontStyle

o A FontStyle node describes a font
e horizontal - horizontal or vertical
e leftToRight ~ andtopToBottom - direction

Shape {
appearance Appearance {
material Material { }

geometry Text {
string . . .
fontStyle FontStyle {
horizontal FALSE
[textvert.wrl] leftToRight TRUE
topToBottom TRUE

}
}
}

44
Building primitive shapes

A sample primitive shape

#VRML V2.0 utf8
A cylinder
Shape {
appearance Appearance {
material Material { }
}
geometry Cylinder {
height 2.0
radius 1.5

}

45
Building primitive shapes

A sample primitive shape

[cylinder.wrl |

46
Building primitive shapes

Building multiple shapes
« Shapes are built centered in the world
« A VRML file can contain multiple shapes

« Shapes overlap when built at the same
location

47
Building primitive shapes

A sample file with multiple shapes

#VRML V2.0 utf8
Shape {
appearance Appearance {
material Material { }
}
geometry Box {
size1.01.01.0

}

}
Shape {
appearance Appearance {
material Material { }

geometry Sphere {
radius 0.7

}
}

48
Building primitive shapes

A sample file with multiple shapes

| space.wrl |

49
Building primitive shapes

Summary
« Shapes are built using ahape node

« Shape geometry is built using geometry nodes,
such asBox, Cone, Cylinder , Sphere , and Text

« Text fonts are controlled using aontStyle
node

50

51
Transforming shapes

Motivation

Example

Using coordinate systems
Visualizing a coordinate system
Transforming a coordinate system
Syntax: Transform

Including children

Translating

Translating

Rotating

Specifying rotation axes
Rotating

Using the Right-Hand Rule
Using the Right-Hand Rule
Scaling

Scaling

Scaling, rotating, and translating
Scaling, rotating, and translating
A sample transform group

A sample transform group

52

Transforming shapes

Motivation

« By default, all shapes are built at the center of
the world

o A transform enables you to
« Position shapes
« Rotate shapes
« Scale shapes

53

Transforming shapes

Example

&
|
g
=
B
-

[towers.wrl]

54

Transforming shapes

Using coordinate systems
« A VRML file builds components for a world

« A file’s world components are built in the
file’s world coordinate system

« By default, all shapes are built at the origin of
the world coordinate system

55

Transforming shapes

Visualizing a coordinate system

Y Y

; X | X

a. XYZ axes and a simple shape b. XYZ axes and a complex
shape

56

Transforming shapes

Transforming a coordinate system

o A transform creates a coordinate system that
IS
. Positioned
« Rotated
. Scaled
relative to a parent coordinate system

« Shapes built in the new coordinate system are
positioned, rotated, and scaled along with it

57

Transforming shapes

Syntax: Transform

« The Transform group node creates a group
with its own coordinate system
e translation - POSItion
e rotation - Oorientation
e scale - Size
o children - shapes to build

Transform {
translation . . .
rotation
scale o
children [...]

}

58

Transforming shapes

Including children

e Thechildren fileld includes a list of one or
more nodes

Transform {

children [
Shape{...}
Shape{...}

Transform {. ..}

59

Transforming shapes

Translating

« Translation positions a coordinate system in
X,Y,and Z

Transform {
XY Z
translation 2.0 0.0 0.0
children|[...]

}

60

Transforming shapes

Translating

a. World coordinate systemb. New coordinate system,
translated 2.0 units in X

c. Shape built in new coordinate system

61

Transforming shapes

Rotating

« Rotationorients a coordinate system about a
rotation axis by a rotation angle
« Angles are measured iradians
e radians = degrees / 180.0 * 3.1415927

Transform {
X Y Z Angle
rotation 0.0 0.0 1.0 0.52
children|[...]

}

62

Transforming shapes

Specifying rotation axes

« A rotation axis defines a pole to rotate around
o Like the Earth’s North-South pole

« Typical rotations are about the X, Y, or Z
axes:

Rotate about Axis

X-AXis 1.0 0.0 0.0
Y-AXis 0.01.00.0
Z-AXIS 0.00.0 1.0

63

Transforming shapes

Rotating

a. World coordinate system b. New coordinate system,
rotated 30.0 degrees around Z

y ¥

.?
\[_
7 g\
i

c. Shape built in new coordinate system

64

Transforming shapes

Using the Right-Hand Rule
« Positive rotations arecounter-clockwise

« TO help remember positive and negative
rotation directions:
« Open your hand
o Stick out your thumb
« Aim your thumb in an axis positive
direction
 Curl your fingers around the axis

« The curl direction is a positiverotation

65

Transforming shapes

Using the Right-Hand Rule

1ll'

v
)
‘%bx X
7
z

a. X-axis rotation b. Y-axis rotation

Cc. Z-axis rotation

66

Transforming shapes

Scaling

« Scalegrows or shrinks a coordinate system by
a scaling factor in X, Y, and Z

Transform {
X Y Z
scale 0.50.50.5
children|[...]

}

67

Transforming shapes

Scaling

I R

a. World coordinate systemb. New coordinate system,
scaled by half

Tf
: 3
\'s

oF

W\‘X
7

i

c. Shape built in new coordinate system

68

Transforming shapes

Scaling, rotating, and translating

« Scale Rotate and Translatea coordinate
system, one after the other

Transform {
translation 2.0 0.0 0.0
rotation 0.0 0.0 1.0 0.52
scale 0.50.50.5
children|[...]

}

« Read operationsbottom-up
« The children are scaled, rotated, then
translated

« Order is fixed, independent of field order

69

Transforming shapes

Scaling, rotating, and translating

Y
4

T

a. World coordinate system b. New coordinate system,
scaled by half,
rotated 30.0 degrees around Z,
and translated 2.0 units in X

70

Transforming shapes

A sample transform group

Transform {
translation -2.0 3.0 0.0
children [
Shape {
appearance Appearance {
material Material { }

}

geometry Cylinder {
radius 0.3
height 6.0
top FALSE

}
}
]
}

71

Transforming shapes

A sample transform group

[arch.wrl] [arches.wrl]

72

Transforming shapes

Summary
« All shapes are built in a coordinate system

e The Transform node creates a new coordinate
system relative to its parent

o Transform node fields do
e translation
e rotation
e Scale

73
Controlling appearance with materials

Motivation

Example

Syntax: Shape

Syntax: Appearance

Syntax: Material

Specifying colors

Syntax: Material

Experimenting with shiny materials
Example

A sample world using appearance
A sample world using appearance

Summary

74

Controlling appearance with materials

Motivation

« The primitive shapes have a default emissive
(glowing) white appearance

« YOU can control a shape’s
« Shading color
« Glow color
« Transparency
« Shininess
« Ambient intensity

ing appearance wi
Example

| colors.wrl |

76

Controlling appearance with materials

Syntax: Shape

« Recall that shape nodes describe:
e appearance - color and texture
e geometry - form, or structure

Shape {
appearance . . .
geometry

}

77

Controlling appearance with materials

Syntax: Appearance

« An Appearance Nnode describes overall shape

appearance
« material properties - color, transparency,

etc.

Shape {
appearance Appearance {
material . . .

}

geometry . . .

}

78

Controlling appearance with materials

Syntax: Material

« A Material node controls shape material
attributes
o diffuseColor - main shading color
e emissiveColor - glowing color
e transparency - Opaqgue or not

Shape {
appearance Appearance {
material Material {
diffuseColor 0.8 0.8 0.8
emissiveColor 0.0 0.0 0.0
transparency 0.0

}
}

geometry . . .

}

79

Controlling appearance with materials

Specifying colors

« Colors specify:
« A mixture of red, green, and blue light
 Values between 0.0 (none) and 1.0 (lots)

Color Red Green Blue Result
White 1.0 1.0 1.0 (White)
Red 1.0 0.0 0.0 (red)
Yellow 1.0 1.0 0.0 (vellow)
Cyan 0.0 1.0 1.0 (cyan)

Brown 0.5 0.2 0.0 (brown)

80

Controlling appearance with materials

Syntax: Material

« A Material node also controls shape shininess
o specularColor - highlight color
« shininess - highlight size
« ambientintensity - ambient lighting effects

Shape {
appearance Appearance {
material Material {
specularColor 0.71 0.70 0.56
shininess 0.16
ambientintensity 0.4

}
}

geometry . . .

}

Controlling appearance with materials

81

Experimenting with shiny materials

Description |n6t‘21nt2§;t d'gglsg'; Spceg%?r shininess
Aluminum 0.30 0.300.30 0.50 0.70 0.70 0.80 0.10
Copper 0.26 0.300.11 0.00 0.75 0.33 0.00 0.08
Gold 0.40 0.22 0.15 0.00 0.71 0.70 0.56 0.16
Metalic Purple 0.17 0.100.030.22 0.64 0.00 0.98 0.20
Metalic Red 0.15 0.27 0.00 0.00 0.610.130.18 0.20
Plastic Blue 0.10 0.200.200.71 0.830.830.83 0.12

82

Controlling appearance with materials

Example

[shiny.wrl |

83

Controlling appearance with materials

A sample world using appearance

Shape {
appearance Appearance {
material Material {
diffuseColor 0.2 0.2 0.2
emissiveColor 0.0 0.0 0.8
transparency 0.25

}
}

geometry Box {
size 2.04.00.3

}
}

84

Controlling appearance with materials

A sample world using appearance

[slabs.wrl]

85

Controlling appearance with materials

Summary

« The Appearance node controls overall shape
appearance

o The material node controls overall material
properties including:
« Shading color
« Glow color
o Transparency
« Shininess
« Ambient intensity

86

87
Grouping nodes

Motivation

Syntax: Group

Syntax: Switch

Syntax: Transform
Syntax: Billboard
Billboard rotation axes
Billboard rotation axes

A sample billboard group
A sample billboard group
Syntax: Anchor

A Sample Anchor
Syntax: Inline

A sample inlined file

A sample inlined file
Summary

Summary

88

Grouping nodes

Motivation

« YOU can group shapes to compose complex
shapes

« VRML has several grouping nodes, including:

Group {...}
Switch {...}
Transform {...}
Billboard {...}
Anchor {...}

Inline {...}

89

Grouping nodes

Syntax: Group

« The Group Node creates a basic group
« Every childnode in the group is displayed

Group {
children|[...]

}

90

Grouping nodes

Syntax: Switch

« The switch group node creates a switched
group
« Only one childnode in the group is
displayed
 YOu select which child
 Children implicitly numbered from 0
« A -1 selects no children

Switch {
whichChoice 0
choice [...]

}

91

Grouping nodes

Syntax: Transform

« The Transform group node creates a group
with its own coordinate system
« Every childnode in the group is displayed

Transform {
translation 0.0 0.0 0.0
rotation O.
scale 1.
children|. ..

}

92

Grouping nodes

Syntax: Billboard

« The Billboard group node creates a group
with a special coordinate system
« Every childnode in the group is displayed
« Coordinate system is turned to face viewer

Billboard {
axisOfRotation 0.0 1.0 0.0
children[...]

}

93

Grouping nodes

Billboard rotation axes

« A rotation axis defines a pole to rotate round
« Similar to a Transform node’srotation field,
but no angle (auto computed)

Y

|

WX
Py, X

-

a. Viewer moves to the right b. Billboard automatically
rotates to face viewer

94

Grouping nodes

Billboard rotation axes

« A standard rotation axis limits rotation to
spin about that axis

o A zerorotation axis enables rotation around
any axis

Rotate about Axis

X-AXiS 1.0 0.0 0.0
Y-AXis 0.01.00.0
Z-AXIS 0.00.0 1.0

Any Axis 0.00.0 0.0

95

Grouping nodes

A sample billboard group

Billboard {
Y-axis
axisOfRotation 0.0 1.0 0.0
children |
Shape{...}
Shape{...}
Shape{...}

]
}

96

Grouping nodes

A sample billboard group

[Y axis: robobill.wrl,
Any axis: robobil2.wrl]

97

Grouping nodes

Syntax: Anchor

« AN Anchor node creates a group that acts as a
clickable anchor
« Every childnode in the group is displayed
« Clicking any child follows a URL
A descriptionnames the anchor

Anchor {
url "stairwy.wrl"

description "Twisty Stairs"
children|[...]

}

98

Grouping nodes

A Sample Anchor

[anchor.wrl] | stairwy.wrl]
a. Click on door to go b. ...the stairway world
to...

99

Grouping nodes

Syntax: Inline

« An Inline node creates a special group from
another VRML file’s contents
« Children read from file selected by a URL
« Every childnode in group is displayed

Inline {
url "table.wrl"

}

100

Grouping nodes

A sample inlined file

Inline { url "table.wrl" }

Transform {
translation -0.95 0.0 0.0
rotation 0.0 1.0 0.0 3.14

children [
Inline { url "chair.wrl" }

]
}

101

Grouping nodes

A sample inlined file

[table.wrl, chair.wrl, dinette.wrl]

102

Grouping nodes

Summary
« The Group Node creates a basic group

« The switch node creates a group with 1 choice
used

« The Transform node creates a group with a
new coordinate system

103

Grouping nodes

Summary

« The Bilboard node creates a group with a
coordinate system that rotates to face the
viewer

« The Anchor node creates a clickable group
. Clicking any child in the group loads a
URL

« Thenline node creates a special group
loaded from another VRML file

104

105
Naming nodes

Motivation

Syntax: DEF

Using DEF

Syntax: USE

Using USE

Using named nodes

A sample use of node names
A sample use of node names

Summary

106

Naming nodes

Motivation

o If several shapes have the same geometry or
appearance, you must use multiple duplicate
nodes, one for each use

« Instead, definea name for the first occurrence
of a node

« Later, usethat name to share the same node
IN a new context

107

Naming nodes

Syntax: DEF

« The DEFsyntax gives a name to a node

Shape {
appearance Appearance {
material DEF RedColor Material {
diffuseColor 1.0 0.0 0.0

}
}

geometry . . .

}

108

Naming nodes

Using DEF
« DEFMust be in upper-case
« YOU can name any node
« Names can be most any sequence of letters

and numbers
« Names must be unique within a file

109

Naming nodes

Syntax: USE

« The usesyntax uses a previously named node

Shape {
appearance Appearance {
material USE RedColor

}

geometry . . .

}

110

Naming nodes

Using USE
« USEMust be in upper-case
« A re-use of a named node iIs called anstance

« A named node can have any number of
Instances
« Each instance shares the same node
description
« YOU can only instance names defined in the
same file

111

Naming nodes

Using named nodes

« Naming and using nodes:
« Saves typing
« Reduces file size
« Enables rapid changes to shapes with the
same attributes
« Speeds browser processing

« Names are also necessary for animation...

112

Naming nodes

A sample use of node names

Inline { url "table.wrl" }

Transform {
translation 0.95 0.0 0.0
children DEF Chair Inline { url "chair.wrl" }

}

Transform {
translation -0.95 0.0 0.0
rotation 0.0 1.0 0.0 3.14
children USE Chair

}

Transform {
translation 0.0 0.0 0.95
rotation 0.0 1.0 0.0 -1.57
children USE Chair

}

Transform {
translation 0.0 0.0 -0.95
rotation 0.0 1.0 0.0 1.57
children USE Chair

}

113

Naming nodes

A sample use of node names

[dinette.wrl |

114

Naming nodes

Summary
« DEFNamMes a node

e USEUSES a hamed node

115
Summary examples

A fairy-tale castle
A bar plot
A simple spaceship

A juggling hand

116

Summary examples

A fairy-tale castle

e Cylinder nodes build the towers
« Cone Nodes build the roofs and tower bottoms

[castle.wrl]

117

Summary examples

A bar plot

« Box Nodes create the bars

« Text Nodes provide bar labels

o Bilboard nodes keep the labels facing the
viewer

[barplot.wrl]

118

Summary examples

A simple spaceship

 Sphere nodes make up all parts of the ship
o Transform Nodes scale the spheres into ship
parts

[space2.wrl]

119

Summary examples

A juggling hand
o Cylinder and sphere nodes build fingers and
joints
e Transform nodes articulate the hand

[hand.wrl |

120

121
Introducing animation

Motivation

Building animation circuits
Examples

Routing events

Using node inputs and outputs
Sample inputs

Sample outputs

Syntax: ROUTE

Event data types

Event data types

Event data types

Following naming conventions
A sample animation

A sample animation

Using multiple routes

Summary

122

Introducing animation

Motivation

o Nodes likeBillboard and Anchor have built-In
behavior

« YOU can create your own behaviors to make
shapes move, rotate, scale, blink, and more

« We need a means to trigger, time, and
respond to a sequence of events in order to
provide better user/world interactions

123

Introducing animation

Building animation circuits

« Almost every node can be a component in an
animation circuit
« Nodes act like virtual electronic parts
« Nodes can send and receive&vents
« Wired routesconnect nodes together

« An eventis a message sent between nodes
« A data value (such as a translation)
« A time stamp (when did the event get sent)

124

Introducing animation

Examples

« TO spin a shape:
o Connect a node that sendmtation eventdo
a Transform node’srotation field

 To blink a shape:
« Connect a node that sendsolor eventdo a
Material hode’sdiffuseColor field

125

Introducing animation

Routing events

« TO set up an animation circuit, you need three
things:

1. A node which sends events
o The node must be named withber

2. A node which receives events
« The node must be named withber

3. A route connecting them

126

Introducing animation

Using node inputs and outputs

« Every node has fields, inputs, and outputs:
o field: A stored value
« eventin: An input
« eventOut:An output

« An exposedFields a short-hand for afield,
eventln andeventOut

127

Introducing animation

Sample inputs

« A Transform node has these eventlns:
e Set_translation
e Set_rotation
e Set_scale

o A Material node has these eventins:
e set_diffuseColor
e set_emissiveColor
° set_transparency

128

Introducing animation

Sample outputs

o AN OrientationInterpolator node has this
eventOut:
e value changed 10 send rotation values

o A Positioninterpolator node has this
eventOut:
o value_changed 10 send position (translation)
values

o A TimeSensor node has this eventOut:
o time 10O send time values

129

Introducing animation

Syntax: ROUTE

« A ROUTEStatement connects two nodes
together using
« The sender’s node name andventOut
name
« The receiver’'s node name anaventin
name

ROUTE MySender.rotation_changed
TO MyReceiver.set_rotation

« ROUTEANd TO Must be in upper-case

130

Introducing animation

Event data types

« Sender and receiver event data types must
match!

« Data types have names with a standard
format, such as:

SFString , SFRotation , O MFColor

Character Values
1 s. Single value
M Multiple values
2 Always anr
remainder Name of data type, suclsaigsg |,

Rotation , Or Color

131

Introducing animation

Event data types

Data type Meaning

SFBool Boolean, true or false value
SFColor , MFColor RGB color value

SFFloat , MFFloat Floating point value
SFimage Image value

SFInt32 , MFInt32 Integer value

SFNode, MFNode Node value

132

Introducing animation

Event data types

Data type Meaning

SFRotation , MFRotation Rotation value

SFString , MFString Text string value
SFTime Time value

SFVec2f , MFVec2f XY floating point value

SFVec3f , MFVec3f XYZ floating point value

133

Introducing animation

Following naming conventions
« Most nodes haveexposedFields

o If the exposed field name isxx , then:
e set xxx IS aneventlinto set the field
e xxx_changed IS aneventOutthat sends when
the field changes
« Theset and _changed sufixes are optional
but recommended for clarity

e The Transform node has:
o rotation field
e set_rotation eventin
e rotation_changed eventOut

134

Introducing animation

A sample animation

DEF Touch TouchSensor { }
DEF Timerl TimeSensor{. ..}
DEF Rotl Orientationinterpolator { . . . }
DEF Framel Transform {

children [

Shape{...}

]
}
ROUTE Touch.touchTime TO Timerl.set_startTime

ROUTE Timerl.fraction_changed TO Rotl.set_fraction
ROUTE Rotl.value _changed TO Framel.set rotation

| colors.wrl |

136

Introducing animation

Using multiple routes

« YOU can havefan-out
« Multiple routes out of the same sender

« YOU can havefan-in
« Multiple routes into the same receiver

137

Introducing animation

Summary
« Connect senders to receivers using routes
« eventinsare inputs, andeventOutsare outputs
A route names thesender.eventOuiand the
receiver.eventin

« Data types must match

« YOU can have multiple routes into or out of a
node

138

139
Animating transforms

Motivation

Example

Controlling time

Using absolute time

Using fractional time

Syntax: TimeSensor

Using timers

Using timers

Using timers

Using timer outputs

A sample time sensor

A sample time sensor

Converting time to position
Interpolating positions

Syntax: Positioninterpolator

Using position interpolator inputs and outputs
A sample using position interpolators
A sample using position interpolators
Using other types of interpolators

Syntax: Orientationinterpolator

Syntax: Positioninterpolator
Syntax: ColorInterpolator

Syntax: Scalarlnterpolator

A sample using other interpolators
Summary

Summary

Summary

140

Animating transforms

Motivation

« An animation changes something over time:
« position- a car driving
. Orientation - an airplane banking
« Color - seasons changing

« Animation requires control over time:
« When to start and stop
« How fast to go

141

Animating transforms

Example

[floater.wrl]

142

Animating transforms

Controlling time

« A TimeSensor node is similar to a stop watch
« You control the start and stop time

« The sensor generates time events while it is
running

o TO animate, route time events into other nodes

143

Animating transforms

Using absolute time

« A TimeSensor node generatesbsoluteand
fractional time events

« Absolute time events give the wall-clock time
« Absolute time is measured in seconds since
12:00am January 1, 1970!
« Useful for triggering events at specific dates
and times

144

Animating transforms

Using fractional time
« Fractional time events give a number from 0.0
to 1.0
« When the sensor starts, it outputs a 0.0

« At the end of acycle it outputs a 1.0

o The number of seconds between 0.0 and 1.0
IS controlled by thecycle interval

« The sensor can loop forever, or run through
only one cycle and stop

145

Animating transforms

Syntax: TimeSensor

« A TimeSensor node generates events based

upon time
e startTime and stopTime - when to run
e cycleinterval - how long a cycle is

e loop - Whether or not to repeat cycles

TimeSensor {
cycleinterval 1.0
loop FALSE
startTime 0.0
stopTime 0.0

}

146

Animating transforms

Using timers

« TO create a continuously running timer:
loop TRUE
stopTime <= startTime

« When stop time <= start time, stop time is
ignored

147

Animating transforms

Using timers

 TO run until the stop time:
loop TRUE
stopTime = startTime

« TO run one cycle then stop:
loop FALSE
stopTime <= startTime

148

Animating transforms

Using timers

o The set_startTime INput event:
o Sets when the timer should start

o The set_stopTime Input event:
« Sets when the timer should stop

149

Animating transforms

Using timer outputs

« TheisActive oOutput event:
« Outputs TRUEat timer start
« Outputs FALSE at timer stop

« Thetime output event:
« Outputs the absolute time

e The fraction_changed output event:
« Outputs values from 0.0 to 1.0 during a
cycle
« Resets to 0.0 at the start of each cycle

150

Animating transforms

A sample time sensor

Shape {
appearance Appearance {
material DEF MonolithlFacade Material {
diffuseColor 0.2 0.2 0.2

} }
geometry Box { size 2.04.0 0.3 }

DEF MonolithlTimer TimeSensor {
cyclelnterval 4.0
loop FALSE
startTime 0.0
stopTime 0.1

}

ROUTE Monolith1Touch.touchTime
TO MonolithlTimer.set_startTime
ROUTE Monolith1Timer.fraction_changed
TO MonolithlFacade.set_transparency

151

Animating transforms

A sample time sensor

[monolith.wrl |

152

Animating transforms

Converting time to position

« TO animate the position of a shape you
provide:
« A list of key positiondor a movement path
A time at which to be at each position

« An interpolator node converts an input time to
an output position
« When a time is in between two key
positions, the interpolator computes an
Intermediate position

153

Animating transforms

Interpolating positions
« Each key position along a path has:

« A key value(such as a position)
A keyfractional time

o Interpolation fills in values between your key
values:

Fractional Time Position

0.0 0.00.00.0
0.1 0.40.10.0
0.2 0.80.20.0

0.5 4.01.00.0

154

Animating transforms

Syntax: Positioninterpolator

o A Positioninterpolator node describes a
position path
« key - key fractional times
o keyvalue - key positions

Positioninterpolator {
key [0.0, ...]
keyValue [0.00.00.0, .. .]

}

o Typically route into a Transform node’s
set_translation Input

155

Animating transforms

Using position interpolator inputs and outputs

o The set_fraction iInput:
« Sets the current fractional time along the
key path

e The value_changed output:
« Outputs the position along the path each
time the fraction is set

156

Animating transforms

A sample using position interpolators

DEF Particlel Transform {
children [
Shape{...}
]

}

DEF Timerl TimeSensor {
cycleinterval 12.0
loop TRUE
startTime 0.0
stopTime -1.0

}

DEF Position1 Positioninterpolator {
key [0.0,...]
keyValue [0.0 0.0 0.0, ..]

ROUTE Timerl.fraction_changed TO Positionl.set_fraction
ROUTE Positionl.value_changed TO Particlel.set_translation

157

Animating transforms

A sample using position interpolators

[spiral.wrl]

158

Animating transforms

Using other types of interpolators

Animate position PositionInterpolator
Animate rotation Orientationinterpolator
Animate scale PositionInterpolator
Animate color ColorInterpolator

Animate transparency Scalarinterpolator

159

Animating transforms

Syntax: Orientationinterpolator

o A OrientationInterpolator node describes an
orientation path
« key - key fractional times
o keyValue - key rotations (axis and angle)

Orientationinterpolator {
key [0.0, ...]
keyValue [0.01.00.00.0, .. .]

}

o Typically route into a Transform node’s
set_rotation Input

160

Animating transforms

Syntax: Positioninterpolator

o A Positioninterpolator node describes a
position or scalepath
« key - key fractional times
o keyValue - key positions (or scales)

Positioninterpolator {
key [0.0, ...]
keyValue [0.00.00.0, .. .]

}

o Typically route into a Transform node’s
set_scale Input

161

Animating transforms

Syntax: ColorInterpolator

o Colorinterpolator node describes a color path
« key - key fractional times
o keyvalue - key colors (red, green, blue)

Colorinterpolator {
key [0.0, ...]
keyValue[1.01.00.0,...]

}

 Typically route into a Material node’s
set_diffuseColor OrI set_emissiveColor inputs

162

Animating transforms

Syntax: Scalarinterpolator

e Scalarinterpolator node describes a scalar
path
« key - key fractional times
o keyvalue - key scalars (used for anything)

Scalarinterpolator {
key[0.0,...]
keyValue [4.5, .. .]

}

« Often route Into aMaterial node’s
set_transparency input

163

Animating transforms

A sample using other interpolators

[squisher.wrl |

164

Animating transforms

Summary

o The TimeSensor node’s fields control
« Timer start and stop times
« The cycle interval
« Whether the timer loops or not

« The sensor outputs
o true/false onisAciive at start and stop
« absolute time ontime while running
« fractional time on fraction_changed while
running

165

Animating transforms

Summary

. Interpolators use key times and values and
compute intermediate values

. All interpolators have:
e A set_fraction Input to set the fractional
time
o Avalue_changed oOuUtput to send new values

166

Animating transforms

Summary

o The Positioninterpolator node converts times
to positions (or scales)

e The OrientationInterpolator node converts
times to rotations

 The Colorinterpolator node converts times to
colors
o The Scalarinterpolator node converts times to

scalars (such as transparencies)

167
Sensing viewer actions

Motivation

Using action sensors

Sensing shapes

Syntax: TouchSensor

A sample use of a TouchSensor node
A sample use of a TouchSensor node
Syntax: SphereSensor

Syntax: CylinderSensor

Syntax: PlaneSensor

Using multiple sensors

A sample use of a multiple sensors

Summary

168

Sensing viewer actions

Motivation

« YOU can sense when the viewer’s cursor:
« IS overa shape
« Hastoucheda shape
o Is draggingatop a shape

« YOU can trigger animations on a viewer’s
touch

e YOU can enable the viewer to move and rotate
shapes

169

Sensing viewer actions

Using action sensors

« There are four main action sensor types:
e TouchSensor Senses touch
o SphereSensor Senses drags
e CylinderSensor Senses drags
e PlaneSensor Senses drags

« The Anchor node is a special-purpose action
sensor with a built-in response

170

Sensing viewer actions

Sensing shapes

o All action sensorssenseaall shapes in the same
group

« Sensors trigger when the viewer’s cursor
touchesa sensed shape

171

Sensing viewer actions

Syntax: TouchSensor

« A TouchSensor node senses the cursot®uch
e isOver - send true/false when cursor
over/not over
e isActive - send true/false when mouse
button pressed/released
o touchTime - Send time when mouse button
released

Transform {
children [
DEF Touched TouchSensor { }
Shape{...}

]
}

172

Sensing viewer actions

A sample use of a TouchSensor node

DEF Touch TouchSensor { }
DEF Timerl TimeSensor{. ..}
DEF Rotl Orientationinterpolator { . . . }
DEF Framel Transform {

children [

Shape{...}

]
}
ROUTE Touch.touchTime TO Timerl.set_startTime

ROUTE Timerl.fraction_changed TO Rotl.set_fraction
ROUTE Rotl.value _changed TO Framel.set rotation

173

Sensing viewer actions

A sample use of a TouchSensor node

| colors.wrl |

174

Sensing viewer actions

Syntax: SphereSensor

« A SphereSensor node senses a curginag and
generates rotations as if rotating a ball
e isActive - sends true/false when mouse
button pressed/released
e rotation_changed - sends rotation during a
drag

Transform {
children [
DEF Rotator SphereSensor {}
DEF RotateMe Transform {. ..}

}]
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

175

Sensing viewer actions

Syntax: CylinderSensor

« A CylinderSensor node senses a cursaolrag
and generates rotations as if rotating a
cylinder

o isActive - Sends true/false when mouse
button pressed/released

e rotation_changed - sends rotation during a
drag

Transform {

children [
DEF Rotator CylinderSensor {}
DEF RotateMe Transform {. ..}

}]
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

176

Sensing viewer actions

Syntax: PlaneSensor

« A PlaneSensor node senses a cursinag and
generates translations as if sliding on a plane
o isActive - Sends true/false when mouse
button pressed/released
e translation_changed - sends translations
during a drag

Transform {
children [
DEF Mover PlaneSensor {}
DEF MoveMe Transform { ...}

]

ROUTE Mover.translation_changed TO MoveMe.set_translatio r

177

Sensing viewer actions

Using multiple sensors
« Multiple sensors can sense the same shalpeat.

o If sensors are in the same group:
 They all respond

o If sensors are at different depths in the
hierarchy:
« The deepest sensor responds
« The other sensors do not respond

178

Sensing viewer actions

A sample use of a multiple sensors

[lamp.wrl]

179

Sensing viewer actions

Summary

« Action sensors sense when the viewer’s
cursor:
« IS Over a shape
« has touched a shape
« IS dragging atop a shape

« Sensors convert viewer actions into events to
« Start and stop animations
 Orient shapes
« Position shapes

180

181
Building shapes out of points, lines, and faces

Motivation

Example

Building shapes using coordinates
Syntax: Coordinate

Using geometry coordinates

Syntax: PointSet

A sample PointSet node shape
Syntax: IndexedLineSet

Using line set coordinate indexes
Using line set coordinate index lists

A sample IndexedLineSet node shape
Syntax: IndexedFaceSet

Using face set coordinate index lists
Using face set coordinate index lists
A sample IndexedFaceSet node shape
Syntax: IndexedFaceSet

Using shape control

Syntax: Coordinatelnterpolator
Interpolating coordinate lists

A sample use of a Coordinatelnterpolator node

Summary
Summary

Summary

182

Building shapes out of points, lines, and faces

Motivation

« Complex shapes are hard to build with
primitive shapes
« Terrain
« Animals
 Plants
« Machinery

o Instead, build shapes out of atomic
components:
 Points, lines, and faces

183

Building shapes out of points, lines, and faces

Example

[Isosurf.wrl]

184

Building shapes out of points, lines, and faces

Building shapes using coordinates

« Shape building is like a 3-Dconnect-the-dots
game:
 Placedotsat 3-D locations
« Connect-the-dots to form shapes

« A coordinatespecifies a 3-Odot location
« Measured relative to a coordinate system
origin

« A geometry node specifies how to connect the
dots

185

Building shapes out of points, lines, and faces

Syntax: Coordinate

e A Coordinate node contains a list of
coordinates for use in building a shape

Coordinate {
point [
XY Z
2.0 1.0 3.0,
4.0255.3

0
5

186

Building shapes out of points, lines, and faces

Using geometry coordinates

« Build coordinate-based shapes using geometry
nodes:
e PointSet
e IndexedLineSet
e IndexedFaceSet

« For all three nodes, use &oordinate Nnode as
the value of thecoord field

187

Building shapes out of points, lines, and faces

Syntax: PointSet

« A PointSet geometry node creates geometry
out of points
« One point (a dot) is placed at each
coordinate

Shape {
appearance Appearance{. ..}
geometry PointSet {
coord Coordinate {
point[...]
}
}
}

188

Building shapes out of points, lines, and faces

A sample PointSet node shape

[ptplot.wrl |

189

Building shapes out of points, lines, and faces

Syntax: IndexedLineSet

« AN IndexedLineSet geometry node creates
geometry out oflines
« A straight line is drawn between pairs of
selected coordinates

Shape {
appearance Appearance{. ..}
geometry IndexedLineSet {
coord Coordinate {
point| ...]

coordindex [...]

}
}

190

Building shapes out of points, lines, and faces

Using line set coordinate indexes

« Each coordinate in acoordinate node IS
implicitly numbered
o INndex 0 is the first coordinate
« Index 1 is the second coordinate, etc.

« TO build a line shape
« Make a list of coordinates, using their
Indexes

e List coordinate indexes in thecoordindex
fleld of the IndexedLineset node

191

Building shapes out of points, lines, and faces

Using line set coordinate index lists
« A line is drawn between pairs of coordinate
Indexes
« -1 marks a break in the line

« A line is not automatically drawn from the
last index back to the first

coordindex [1,0, 3,8,-1,5,9,0]

1,038, Draw line from 1 to O to
3t08

-1, End line, start next

5,9,0 Draw line from 5 to 9 to

0

192

Building shapes out of points, lines, and faces

A sample IndexedLineSet node shape

[Inplot.wrl]

193

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
. A flat face(polygon) is drawn using an
outline specified by coordinate indexes

Shape {
appearance Appearance{. ..}
geometry IndexedFaceSet {
coord Coordinate {
point| ...]

coordindex [...]

}
}

194

Building shapes out of points, lines, and faces

Using face set coordinate index lists

« To build a face shape
« Make a list of coordinates, using their
Indexes

e List coordinate indexes in thecoordindex
fleld of the IndexedFaceset node

195

Building shapes out of points, lines, and faces

Using face set coordinate index lists
« A triangle is drawn connecting sequences of
coordinate indexes
« -1 marks a break in the sequence

« Each faceis automatically closed,
connecting the last index back to the first

coordindex [1,0, 3,8,-1,5,9,0]

1,0,3,8 Draw face from 1 to O to
3to8tol

-1, End face, start next

5,9,0 Draw face from 5 to 9 to

Otob

196

Building shapes out of points, lines, and faces

A sample IndexedFaceSet node shape

[lightng.wrl]

197

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
« solid - shape Is solid
o ccw - faces are counter-clockwise
e convex - faces are convex

Shape {

appearance Appearance{. ..}

geometry IndexedFaceSet {
coord Coordinate { . . . }
coordindex [.. .]
solid TRUE
ccw TRUE
convex TRUE

198

Building shapes out of points, lines, and faces

Using shape control

« A solid shape is one where the insides are
never seen
o If never seen, don’t attempt to draw them
« When solid TRUE , the backsides (inside) of
faces are not drawn

o The front of a face has coordinates In
counter-clockwise order
« When ccw FALSE , the other side Is the front

« Faces are assumed to be convex
« When convex FALSE , concave faces are
automatically broken into multiple convex
faces

199

Building shapes out of points, lines, and faces

Syntax: Coordinatelnterpolator

A Coordinatelnterpolator node describes a
coordinate path
o keys - key fractions
o values - key coordinate lists (X,Y,Z lists)

Coordinatelnterpolator {
key [0.0, ...]
keyValue [0.01.00.0, .. .]

}

« Typically route into a Coordinate node’s
set_point Input

200

Building shapes out of points, lines, and faces

Interpolating coordinate lists

e A Coordinatelnterpolator node interpolates
lists of coordinates
« Each output is alist of coordinates
o If n output coordinates are needed for
fractional times:
«nxt coordinates are needed in the key
value list

201

Building shapes out of points, lines, and faces

A sample use of a Coordinatelnterpolator node

[wiggle.wrl |

202

Building shapes out of points, lines, and faces

Summary

« Shapes are built by connecting together
coordinates

o Coordinates are listed in acoordinate node

. Coordinates are implicitly numbers starting
at 0

. Coordinate index lists give the order in which
to use coordinates

203

Building shapes out of points, lines, and faces

Summary

« The Pointset node draws a dot at every
coordinate
e Thecoord field value Is acoordinate node

e The IndexedLineSet node draws lines between
coordinates
e The coord field value IS acoordinate node
e The coordindex field value iIs a list of
coordinate indexes

204

Building shapes out of points, lines, and faces

Summary

e The IndexedraceSet node draws faces outlined
by coordinates
e The coord field value IS acoordinate node
e The coordindex field value is a list of
coordinate indexes

 The Coordinatelnterpolator node converts
times to coordinates

205
Building elevation grids

Motivation

Example

Syntax: ElevationGrid
Syntax: ElevationGrid
Syntax: ElevationGrid
A sample elevation grid
A sample elevation grid

Summary

206

Building elevation grids

Motivation

« Building terrains is very common
o Hills, valleys, mountains
« Other tricky uses...

« YOU can build a terrain using an
IndexedFaceSet hode

« YOu can build terrains more efficiently using
an ElevationGrid ~ node

207

Building elevation grids

Example

[128 x 128: mount128.wrl]

208

Building elevation grids

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
« xDimension and zDimension - grid size
e xSpacing and zSpacing - row and column
distances

Shape {
appearance Appearance{. ..}
geometry ElevationGrid {
xDimension 3
zDimension 2
xSpacing 1.0
zSpacing 1.0

209

Building elevation grids

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
« height - elevations at grid points

Shape {
appearance Appearance{. ..}
geometry ElevationGrid {

height [
0.0, -
0.2

]
}

0.5, 0.0,
, 4.0,0.0

}

210

Building elevation grids

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
e solid - shape Is solid
« ccw - faces are counter-clockwise

Shape {
appearance Appearance{. ..}
geometry ElevationGrid {

solid TRUE
ccw TRUE

}
}

211
Building elevation grids

A sample elevation grid

zDimension 9
xSpacing 1.0
zSpacing 1.0
solid FALSE

appearance Appearance { . . .
xDimension 9

geometry ElevationGrid {

Shape {

SoguSSggg
OO 1000000
SOOI
OO0 AdOAHO

QQoumwooogoow
CoOOHMANMNO

QUWOoWOOSo
co-daNmMTNOO

VWO O QO
ocNMITLLM—AOO

SouWoKBiiS g
T OONS ANHOO
WOWNWOOoOWa o
OOOOMNOOO
SogogowocSog
OCOOONNOOO
SScogowmwooao
OO0 O0O10000

212

Building elevation grids

A sample elevation grid

[mount.wrl]

213

Building elevation grids

Summary

« AN ElevationGrid ~ node efficiently creates a
terrain

« Grid size is specified in thedimension and
zDimension fields

« Grid spacing is specified in thexspacing and
zSpacing field

 Elevations at each grid point are specified in
the height field

214

215
Building extruded shapes

Motivation

Examples

Creating extruded shapes

Extruding along a straight line

Extruding around a circle

Extruding along a helix

Syntax: Extrusion

Syntax: Extrusion

Squishing and twisting extruded shapes
Syntax: Extrusion

Sample extrusions with scale and rotation

Summary

216

Building extruded shapes

Motivation

« Extruded shapes are very common
« Tubes, pipes, bars, vases, donuts
« Other tricky uses...

« YOu can build extruded shapes using an
IndexedFaceSet hode

« YOu can build extruded shapes more easily
and efficiently using anextrusion nhode

217

Building extruded shapes

Examples

[slide.wrl] | donut.wrl]

218

Building extruded shapes

Creating extruded shapes

« Extruded shapes are described by
« A 2-D cross-section
A 3-D spinealong which to sweep the
Cross-section

« Extruded shapes are like long bubbles created
with a bubble wand
« The bubble wand’s outline is the
Cross-section
« The path along which you swing the wand
IS the spine

219

Building extruded shapes

Extruding along a straight line

X

Z
z
a. Square cross-section b. Straight spine

c. Resulting extrusion

220

Building extruded shapes

Extruding around a circle

O
‘¢~<x
Z
z
a. Circular cross-section b. Circular spine

c. Resulting extrusion

221

Building extruded shapes

Extruding along a helix

N,

Z vi
a. Half-circle
Cross-section

b. Helical spine

c. Resulting extrusion

222

Building extruded shapes

Syntax: Extrusion

« An Extrusion geometry node creates extruded
geometry
e cross-section - 2-D cross-section
e spine - 3-D sweep path
e endCap andbeginCap - cap ends

Shape {
appearance Appearance{. ..}
geometry Extrusion {
crossSection [. . .]
spine[...]
endCap TRUE
beginCap TRUE

}
}

223

Building extruded shapes

Syntax: Extrusion

« An Extrusion geometry node creates extruded
geometry
« solid - shape Is solid
o ccw - faces are counter-clockwise
e convex - faces are convex

Shape {
appearance Appearance{. ..}
geometry Extrusion {

solid TRUE
ccw TRUE
convex TRUE

}
}

224

Building extruded shapes

Squishing and twisting extruded shapes

« YOU can scale the cross-section along the spine
. Vases, musical instruments
« Surfaces of revolution

« YOU can rotate the cross-section along the
spine
« Twisting ribbons

225

Building extruded shapes

Syntax: Extrusion

« An Extrusion geometry node creates geometry
using
e scale - Cross-section scaling per spine point
e Orientation - Cr0SS-section rotation per
spine point

Shape {
appearance Appearance{. ..}
geometry Extrusion {

scale|...]
orientation [. . .]

}
}

226

Building extruded shapes

Sample extrusions with scale and rotation

[horn.wrl] [bartwist.wrl]

227

Building extruded shapes

Summary

« An Extrusion node efficiently creates extruded
shapes

e The crosssection field specifies the
Cross-section

« The spine field specifies the sweep path

e The scale andorientaton fields specify
scaling and rotation at each spine point

228

229
Controlling color on coordinate-based geometry

Motivation

Example

Syntax: Color

Binding colors

Syntax: PointSet

A sample PointSet node shape
Syntax: IndexedLineSet

Controlling color binding for line sets

A sample IndexedLineSet node shape
Syntax: IndexedFaceSet

Controlling color binding for face sets
A sample IndexedFaceSet node shape
Syntax: ElevationGrid

Controlling color binding for elevation grids
A sample ElevationGrid node shape

Summary

230

Controlling color on coordinate-based geometry

Motivation

« The material nNode gives an entire shape the
same color

« YOu can provide colors for individual parts of
a shape using a&olor node

231

Controlling color on coordinate-based geometry

Example

[cmount.wrl]

232

Controlling color on coordinate-based geometry

Syntax: Color

e A Color node contains a list of RGB values
(similar to a Coordinate node)

Color {
color[1.00.00.0,...]
}

« Used as theolor field value of
IndexedFaceSet , IndexedLineSet , PointSet Ofr
ElevationGrid ~ nodes

233

Controlling color on coordinate-based geometry

Binding colors

e Colors In thecolor node override those In the
Material nhode

e YOU can bind colors
« TO each point, line, or face
« 10 each coordinate in a line, or face

234

Controlling color on coordinate-based geometry

Syntax: PointSet

« A PointSet geometry node creates geometry
out of points
o color - provides a list of colors
« Always binds one color to each point, In
order

Shape {
appearance Appearance{...}
geometry PointSet {
coord Coordinate { . . . }
color Color { ...}

}
}

235

Controlling color on coordinate-based geometry

A sample PointSet node shape

[scatter.wrl |

236

Controlling color on coordinate-based geometry

Syntax: IndexedLineSet

« AN IndexedLineSet geometry node creates
geometry out of lines
e color - list of colors
e colorindex - Selects colors from list
e colorPerVertex - control color binding

Shape {

appearance Appearance{...}

geometry IndexedLineSet {
coord Coordinate { . . . }
coordindex [.. .]
color Color { ...}
colorindex [.. .]
colorPerVertex TRUE

237

Controlling color on coordinate-based geometry

Controlling color binding for line sets

o The colorPervertex field controls how color
Indexes are used
« FALSE one color index to each line (ending
at -1 coordinate indexes)

e TRUE one color index to each coordinate
iIndex of each line (including -1 coordinate
Indexes)

238

Controlling color on coordinate-based geometry

A sample IndexedLineSet node shape

[burst.wrl]

239

Controlling color on coordinate-based geometry

Syntax: IndexedFaceSet

« AN IndexedFaceSet geometry node creates
geometry out of faces
e color - list of colors
e colorindex - Selects colors from list
e colorPerVertex - control color binding

Shape {

appearance Appearance{...}

geometry IndexedFaceSet {
coord Coordinate { . . . }
coordindex [.. .]
color Color { ...}
colorindex [.. .]
colorPerVertex TRUE

240

Controlling color on coordinate-based geometry

Controlling color binding for face sets

o The colorPervertex field controls how color
Indexes are used (similar to line sets)
« FALSE one color index to each face (ending
at -1 coordinate indexes)

« TRUE ONne color index to each coordinate
Index of each face (including -1 coordinate
Indexes)

241

Controlling color on coordinate-based geometry

A sample IndexedFaceSet node shape

[log.wrl]

242

Controlling color on coordinate-based geometry

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
o color - list of colors
e colorPerVertex - control color binding
« Always binds one color to each grid point
or square, in order

Shape {
appearance Appearance{...}
geometry ElevationGrid {

height [. . .]
color Color { ...}
colorPerVertex TRUE

}
}

243

Controlling color on coordinate-based geometry

Controlling color binding for elevation grids

o The colorPervertex field controls how color
Indexes are used (similar to line and face sets)
« FALSE One color to each grid square

« TRUE One color to each height for each grid
square

244

Controlling color on coordinate-based geometry

A sample ElevationGrid node shape

[cmount.wrl]

245

Controlling color on coordinate-based geometry

Summary

« The color node lists colors to use for parts of a
shape
« Used as the value of theolor field
« Color indexes select colors to use
« Colors override Material node

o The colorPervertex field selects color per
line/face/grid square or color per coordinate

246

247
Controlling shading on coordinate-based geometry

Motivation

Example

Controlling shading using the crease angle
Selecting crease angles

A sample using crease angles

Using normals

Syntax: Normal

Syntax: IndexedFaceSet

Controlling normal binding for face sets
Syntax: ElevationGrid

Controlling normal binding for elevation grids
Syntax: Normallnterpolator

Summary

248

Controlling shading on coordinate-based geometry

Motivation

« When shaded, the faces on a shape are
obvious

« TO create a smooth shape you can use a large
number of small faces
« Requires lots of faces, disk space, memory,
and drawing time

« Instead, usesmooth shadingo create the
Illusion of a smooth shape, but with a small
number of faces

249

Controlling shading on coordinate-based geometry

Example

[cmount.wrl] [cmount2.wrl |
a. No smooth shadingn. With smooth shading

250

Controlling shading on coordinate-based geometry

Controlling shading using the crease angle

« By default, faces are drawn with faceted
shading

« YOU can enable smooth shading using the
creaseAngle field for
e IndexedFaceSet
e ElevationGrid
e Extrusion

251

Controlling shading on coordinate-based geometry

Selecting crease angles

« A crease anglas a threshold angle between
two faces

o If face angle >= crease
angle, use facet shading
——

o If face angle < crease
angle, use smooth shading

252

Controlling shading on coordinate-based geometry

A sample using crease angles

[heyll.wrl | [heyl2.wrl |
a. crease angle = 0 Db. crease angle = 90 deg
Smooth shading disablésimooth shading enabled

253

Controlling shading on coordinate-based geometry

Using normals

« A normal vectorindicates the direction a face
IS facing
o If it faces a light, the face is shaded bright

By defualt, normals are automatically
generated by the VRML browser
« YOUu can specify your own normals with a
Normal node

« Usually automatically generated normals
are good enough

254

Controlling shading on coordinate-based geometry

Syntax: Normal

« A Normal hode contains a list of normal vectors
that overrideuse of a crease angle

Normal {
vector[0.01.00.0, .. .]

}

« Normals can be given fofindexedrFaceSet and
ElevationGrid ~ hodes

255

Controlling shading on coordinate-based geometry

Syntax: IndexedFaceSet

« AN IndexedFaceSet geometry node creates
geometry out of faces
o« normal - list of normals
 normalindex - Selects normals from list
e normalPerVertex - control normal binding

Shape {

appearance Appearance{...}

geometry IndexedFaceSet {
coord Coordinate { . . . }
coordindex | .. .]
normal Normal { . . . }
normalindex [. . .]
normalPerVertex TRUE

256

Controlling shading on coordinate-based geometry

Controlling normal binding for face sets

o The normalPervertex fleld controls how
normal indexes are used
« FALSE one normal index to each face
(ending at -1 coordinate indexes)

« TRUE one normal index to each coordinate
Index of each face (including -1 coordinate
Indexes)

257

Controlling shading on coordinate-based geometry

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
o« normal - list of normals
e normalPerVertex - control normal binding
« Always binds one normal to each grid point
or square, in order
Shape {

appearance Appearance{...}
geometry ElevationGrid {

height [. . .]
normal Normal { . . . }
normalPerVertex TRUE

}
}

258

Controlling shading on coordinate-based geometry

Controlling normal binding for elevation grids

e The normalPervertex fleld controls how
normal indexes are used (similar to face sets)
« FALSE one normal to each grid square

« TRUE one normal to each height for each
grid square

259

Controlling shading on coordinate-based geometry

Syntax: Normallnterpolator

o A Normalinterpolator node describes a normal
set
o keys - key fractions
o values - key normal lists (X,Y,Z lists)
o Interpolates lists of normals, similar to the
Coordinatelnterpolator

Normalinterpolator {
key [0.0, ...]
keyValue [0.01.01.0,...]

}

o Typically route into a Normal node’s
set_vector INnput

260

Controlling shading on coordinate-based geometry

Summary

o The creaseAngle field controls faceted or
smooth shading

« The Normal node lists normal vectors to use for
parts of a shape
« Used as the value of theormal field
« Normal indexes select normals to use
« Normals override creaseAngle Vvalue

e The normalPervertex field selects normal per
face/grid square or normal per coordinate

 The Normalinterpolator node converts times to
normals

A terrain

Particle flow

A real-time clock
A timed timer

A morphing snake

261
Summary examples

262

Summary examples

A terrain

« AN ElevationGrid ~ node creates a terrain
« A Color node provides terrain colors

[land.wrl |

263

Summary examples

Particle flow

« Multiple Extrusion nodes trace particle paths

« Multiple Positioninterpolator nodes define
particle animation paths

« Multiple Timesensor nodes clock the animation
using different starting times

[espiralm.wrl |

264

Summary examples

A real-time clock

o A set of Timesensor nodes watch the time
o A set of Orientationinterpolator nodes spin
the clock hands

[stopwtch.wrl |

265

Summary examples

A timed timer

o A first TimeSensor node clocks a second
TimeSensor Node to create a periodic animation

[timetime.wrl |

266

Summary examples

A morphing snake

A Coordinatelnterpolator node animates the
spine of anextrusion node

[shake.wrl |

267
Mapping textures

Motivation

Example

Example Textures

Using image textures

Using pixel textures

Using movie textures
Syntax: Appearance

Syntax: ImageTexture
Syntax: PixelTexture

Syntax: MovieTexture

Using materials with textures
Colorizing textures

Using transparent textures

A sample transparent texture
A sample transparent texture

Summary

268

Mapping textures

Motivation

« YOU can model every tiny texture detall of a
world using a vast number of colored faces
« Takes a long time to write the VRML
. Takes a long time to draw

« Use a trick instead
« Take a picture of the real thing
« Paste that picture on the shape, like
sticking on a decal

« This technique is calledTexture Mapping

269

Mapping textures

Example

[can.wrl]

270

Mapping textures

Example Textures

271

Mapping textures

Using image textures

« IMmage texture
« Uses a single image from a file in one of
these formats:

GIF e 8-bit lossless compressed images
e 1 transparency color
e Usually a poor choice for texture mapping

JPEG e 8-bit thru 24-bit lossy compressed images
e No transparency support
e An adequate choice for texture mapping

PNG e 8-bit thru 24-bit lossless compressed images
e 8-bit transparency per pixel
e Best choice

272

Mapping textures

Using pixel textures

« Pixel texture
« A single image, given in the VRML file
itself

« The image is encoded usingex
« Up to 10 bytes per pixel
. Veryinefficient
« Only useful for very small textures
o Stripes
« Checkerboard patterns

273

Mapping textures

Using movie textures

« Movie texture
« A movie from an MPEG-1 file

« The movie plays back on the textured
shape
« Problematic in some browsers

274

Mapping textures

Syntax: Appearance

« An Appearance Nnode describes overall shape
appearance
o texture - texture source

Shape {
appearance Appearance {
material Material { . . . }
texture ImageTexture { ...}

}

geometry . . .

275

Mapping textures

Syntax: ImageTexture

« AN ImageTexture NoOde selects a texture image
for texture mapping
o« url - texture image file URL

Shape {
appearance Appearance {
material Material { }
texture ImageTexture {
url "wood.jpg"
}
}

geometry . . .

276

Mapping textures

Syntax: PixelTexture

« A PixelTexture ~ Node specifies texture image
pixels for texture mapping
o image - texture image pixels
. Image data - width, height, bytes/pixel,
pixel values

Shape {
appearance Appearance {
material Material { }
texture PixelTexture {
image 213
OxFFFFOO OxFF0000
}

}

geometry . . .

277
Mapping textures

Syntax: MovieTexture

o A MovieTexture hode selects a texture movie

for texture mapping
o url - texture movie file URL
« When to play the movie, and how quickly
(like a TimeSensor node)

Shape {
appearance Appearance {

material Material { }

texture MovieTexture {
url "movie.mpg"
loop TRUE
speed 1.0
startTime 0.0
stopTime 0.0

}
}

geometry . . .

278

Mapping textures

Using materials with textures

« Color textures overridethe color in amaterial
node

« Grayscale texturesmultiply with the material
node color
« Good for colorizing grayscale textures

o If there iIs no material node, the texture iIs
applied emissively

279

Mapping textures

Colorizing textures

a. Grayscale wood b. Six wood colors from
texture one colorized texture

280

Mapping textures

Using transparent textures

« Texture images can includecolor and
transparencyalues for each pixel
« Pixel transparency is also known asalpha

« Pixel transparency enables you to make parts
of a shape transparent
« Windows, grillwork, holes
. Trees, clouds

281

Mapping textures

A sample transparent texture

a. Color portion of tree b. Transparency portion
texture of tree texture

282

Mapping textures

A sample transparent texture

[treewall.wrl |

283

Mapping textures

Summary
o A textureis like a decal pasted to a shape
« Specify the texture using anmageTexture
PixelTexture , OF MovieTexture Node In an

Appearance hode

« Color textures override material, grayscale
textures multiply

« Textures with transparency create holes

284

285
Controlling how textures are mapped

Motivation

Working through the texturing process
Using texture coordinate system
Specifying texture coordinates
Applying texture transforms

Texturing a face

Working through the texturing process
Syntax: TextureCoordinate

Syntax: IndexedFaceSet

Syntax: ElevationGrid

Syntax: Appearance

Syntax: TextureTransform

A sample using no transform

A sample using translation

A sample using rotation

A sample using scale

A sample using texture coordinates

A sample using scale

Scaling, rotating, and translating

Scaling, rotating, and translating

A sample using scale and rotation

Summary

286

Controlling how textures are mapped

Motivation

« By default, an entire texture image is mapped
once around the shape

« YOU can also:
« Extract only pieces of interest
. Create repeating patterns

287

Controlling how textures are mapped

Working through the texturing process

« Imagine the texture image is a big piece of
rubbery cookie dough

« Select a texture image piece
« Define the shape of a cookie cutter
« Position and orient the cookie cutter
« Stamp out a piece of texture dough

« Stretch the rubbery texture cookie to fit a face

288

Controlling how textures are mapped

Using texture coordinate system

« Texture images (the dough) are in &exture
coordinate system

] . Sdirection is
horizontal

o T direction is vertice
« (0,0) at lower-left

« (1,1) at upper-right

>S5

289

Controlling how textures are mapped

Specifying texture coordinates

o Texture coordinatesnd texture coordinate

Indexesspecify a texture piece shape (the
cookie cutter)

298 Y000

1.0 1.0,
@ 0.01.0

290

Controlling how textures are mapped

Applying texture transforms
o Texture transformsranslate, rotate, and scale

the texture coordinates (placing the cookie
cutter)

o
)

&
i

o
OGS

201

Controlling how textures are mapped

Texturing a face

« Bind the texture to a face (stretch the cookie
and stick it)

292

Controlling how textures are mapped

Working through the texturing process
« Select piece with texture coordinates and
Indexes
. Create a cookie cutter

o Transform the texture coordinates
« Position and orient the cookie cutter

« Bind the texture to a face
« Stamp out the texture and stick it on a face

« The process isrery similarto creating faces!

293

Controlling how textures are mapped

Syntax: TextureCoordinate

e A TextureCoordinate node contains a list of
texture coordinates

TextureCoordinate {
point[0.2 0.2,0.80.2,...]
}

« Used as thaexcoord field value of
IndexedFaceSet OF ElevationGrid nodes

294

Controlling how textures are mapped

Syntax: IndexedFaceSet

« An IndexedFaceSet geometry node creates
geometry out of faces
o texCoord aNnd texCoordindex - Specify texture

pieces

Shape {
appearance Appearance{...}
geometry IndexedFaceSet {
coord Coordinate { . . . }
coordindex [.. .]
texCoord TextureCoordinate { . . . }
texCoordindex [. . .]

295

Controlling how textures are mapped

Syntax: ElevationGrid

« AN ElevationGrid ~ geometry node creates
terrains
o texCoord - Specify texture pieces
« Automatically generated texture coordinate
Indexes

Shape {
appearance Appearance{...}
geometry ElevationGrid {
height [. . .]
texCoord TextureCoordinate { . . . }
}
}

296

Controlling how textures are mapped

Syntax: Appearance

« An Appearance Nnode describes overall shape
appearance
e textureTransform - transform

Shape {
appearance Appearance {
material Material { . . . }
texture ImageTexture { ...}
textureTransform TextureTransform {. ..}

}

geometry . . .

}

297

Controlling how textures are mapped

Syntax: TextureTransform

e A TextureTransform

node transforms texture

coordinates
e translation - POSItion
e rotation - Orientation
e scale - Size

Shape {
appearance Appearance {

material Material { . . . }

texture ImageTexture { ...}

textureTransform TextureTransform {
translation 0.0 0.0
rotation 0.0
scale 1.01.0

}
}
}

298

Controlling how textures are mapped

A sample using no transform

a. Texture in texture b. Texture on shape
space

299

Controlling how textures are mapped

A sample using translation

a. Texture Iin texture b. Translated cookie
space cutter

c. Texture on shape

300

Controlling how textures are mapped

A sample using rotation

oo
(KAL)

a. Texture In texture b. Rotated cookie cutter
space

c. Texture on shape

301

Controlling how textures are mapped

A sample using scale

a. Texture In texture b. Scaled cookie cutter
space

4

c. Texture on shape

302

Controlling how textures are mapped

A sample using texture coordinates

[cookie.wrl]
b. Texture on shapes

303

Controlling how textures are mapped

A sample using scale

a. Texture image [brickb.wrl]
b. Texture on shape

304

Controlling how textures are mapped

Scaling, rotating, and translating

« Scale Rotate and Translatea texture cookie
cutter one after the other

Shape {
appearance Appearance {

material Material { . . . }

texture ImageTexture { . ..}

textureTransform TextureTransform {
translation 0.0 0.0
rotation .785
scale 8.58.5

}
}
}

305

Controlling how textures are mapped

Scaling, rotating, and translating

« Read texture transform operationstop-down
« The cookie cutter iIs translated, rotated,
then scaled
« Order is fixed, independent of field order
o This Is thereverseof aTransform nhode

o This is a significant difference between VRML
2.0 and ISO VRML 97
« VRML 2.0 uses scale, rotate, translate
order
« ISO VRML 97 uses translate, rotate, scale
order

306

Controlling how textures are mapped

A sample using scale and rotation

a. Texture image [fence.wrl]
b. Texture on shape

307

Controlling how textures are mapped

Summary

« Texture images are in a texture coordinate
system

o Texture coordinates and indexes describe a
texture cookie cutter

o Texture transforms translate, rotate, and
scale place the cookie cutter

« Texture indexes bind the cut-out cookie
texture to a face on a shape

309
Lighting your world

Motivation

Example

Using types of lights

Using common lighting features
Using common lighting features
Syntax: PointLight

Syntax: DirectionalLight
Syntax: SpotLight

Syntax: SpotLight

Example

Summary

310
Lighting your world

Motivation

« By default, you have one light in the scene,
attached to your head

« For more realism, you can add multiple lights
« Suns, light bulbs, candles
« Flashlights, spotlights, firelight

o Lights can be positioned, oriented, and
colored

o Lights do not cast shadows

311

Lighting your world
Example

312
Lighting your world

Using types of lights

« Theer are three types of VRML lights
« Point lights - radiate in all directions from a
point

o Directional lights - aim in one direction
from infinitely far away

« Spot lights- aim in one direction from a
point, radiating in a cone

313
Lighting your world

Using common lighting features

« All lights have several common fields:
e on - turn it on or off
o intensity - control brightness
 ambientintensity - control ambient effect
e color - Select color

314
Lighting your world

Using common lighting features

 Point lights and spot lights also have:
e location - position
o radius - maximum lighting distance
o attenuation - drop off with distance

« Directional lights and spot lights also have
o direction - alm direction

315
Lighting your world

Syntax: PointLight

A PointLight node illuminates radially from a
point

PointLight {
location 0.0 0.0 0.0
intensity 1.0
color1.01.01.0

[pntlite.wrl]

316
Lighting your world

Syntax: DirectionalLight

o A DirectionalLight node illuminates in one
direction from infinitely far away

DirectionalLight {
direction 1.0 0.0 0.0
intensity 1.0
color1.01.01.0

}

[dirlite.wrl]

317
Lighting your world

Syntax: SpotLight

o A spotLight node illuminates from a point, In
one direction, within a cone

SpotLight {
location 0.0 0.0 0.
direction 1.0 0.0 0.
intensity 1.0
color 1.01.01.0
cutOffAngle 0.785

0
0

[sptlite.wrl]}

318
Lighting your world

Syntax: SpotLight

« The maximum width of a spot light's cone is
controlled by the cutoffangle field

« An inner cone region with constant brightness
IS controlled by thebeamwidth field

SpotLight {

éﬁfOffAngIe 0.785
beamWidth 0.52

}

319
Lighting your world

Example

[temple.wrl |

320
Lighting your world

Summary

« There are three types of lights: point,
directional, and spot

. All lights have an on/off, intensity, ambient
effect, and color

« Point and spot lights have a location, radius,
and attenuation

« Directional and spot lights have a direction

321
Adding backgrounds

Motivation

Using the background components
Using the background components
Syntax: Background

Using sky angles and colors

Using ground angles and colors

A sample background

A sample background

Syntax: Background

A sample background image

A sample background

A sample background

Summary

322
Adding backgrounds

Motivation
« Shapes form theforeground of your scene
« YOu can add abackgroundto provide context
« Backgrounds describe:
« SKky and ground colors

« Panorama images of mountains, cities, etc

« Backgrounds are faster to draw than if you
used shapes to build them

323
Adding backgrounds

Using the background components

« A background creates three special shapes:
« A sky sphere
« A ground hemispherenside the sky sphere
« A panorama boxnside the ground
hemisphere

« The sky sphere and ground hemisphere are
shaded with a color gradient

« The panorama box is texture mapped with six
Images

324
Adding backgrounds

Using the background components

 Transparent parts of the ground hemisphere
reveal the sky sphere

 Transparent parts of the panorama box reveal
the ground and sky

« The viewer can look up, down, and
side-to-side to see different parts of the
background

« The viewer can never get closer to the
background

325
Adding backgrounds

Syntax: Background

o A Background node describes background
colors
o skyColor and skyAngle - Sky gradation
e groundColor and groundAngle - ground
gradation

Background {

skyColor [0.10.10.0,...]
skyAngle [1.309, 1.571]
groundColor [0.00.20.7, . . .]
groundAngle [1.309, 1.571]

}

326
Adding backgrounds

Using sky angles and colors
« The first sky color is at the north pole

« The remaining sky colors are at given sky
angles
« The maximum angle is 180 degrees =
3.1415 radians

« The last color smears on down to the south
pole

327
Adding backgrounds

Using ground angles and colors
« The first ground color is at the south pole

« The remaining ground colors are at given
ground angles
« The maximum angle is 90 degrees = 1.5708
radians

o After the last color, the rest of the hemisphere
IS transparent

328
Adding backgrounds

A sample background

Background {
skyColor [
0.00.2 0.
0.00.51.
1.01.01.

7
0,
0

]
skyAngle [1.309, 1.571]
groundColor [

0.1 0.10 0.0,

0.4 0.250.2,

0.6 0.60 0.6,

]
groundAngle [1.309, 1.571]

329
Adding backgrounds

A sample background

| back.wrl]

330
Adding backgrounds

Syntax: Background

o A Background node describes background
Images

o frontUrl , etc - texture image URLSs for box

Background {

frontUrl "mountns.png”
backUrl "mountns.png"
leftUrl "mountns.png"
rightUrl "mountns.png"
topUrl "clouds.png"

bottomUrl "ground.png"

331
Adding backgrounds

A sample background image

a. Color portion of b. Transparency portion
mountains texture of mountains texture

332
Adding backgrounds

A sample background

Background {
skyColor [
0.00.2 0.
0.00.51.
1.01.01.

7
0,
0

]
skyAngle [1.309, 1.571]
groundColor [

0.1 0.10 0.0,

0.4 0.250.2,

0.6 0.60 0.6,

]

groundAngle [1.309, 1.571]
frontUrl "mountns.png"
backUrl "mountns.png"
leftUrl "mountns.png”
rightUrl "mountns.png"

no top or bottom images

333
Adding backgrounds

A sample background

| back2.wrl |

334
Adding backgrounds

Summary
« Backgrounds describe:
« Ground and sky color gradients on ground
hemisphere and sky sphere

« Panorama images on a panorama box

« The viewer can look around, but never get
closer to the background

335
Adding fog

Motivation

Examples

Using fog visibility controls
Selecting a fog color
Syntax: Fog

Several fog samples

Summary

336
Adding fog
Motivation

« FOgQ increases realism:
« Add fog outside to create hazy worlds
. Add fog inside to create dark dungeons
« Use fog to set a mood

« The further the viewer can see, the more you
have to model and draw

« To reduce development time and drawing
time, limit the viewer’s sight by using fog

337
Adding fog
Examples

QEESSp=SE=—— |
[fog2.wrl] [fog4.wrl]

338
Adding fog
Using fog visibility controls

. The fog typeselects linear or exponential
visibility reduction with distance
. Linear Is easier to control
« Exponential is more realistic and "thicker"

 The visibility range selects the distance where
the fog reaches maximum thickness
« FOg Iis "clear" at the viewer, and gradually
reduces visibility

339
Adding fog
Selecting a fog color

« Fog has afog color
« White is typical, but black, red, etc. also
possible

« Shapesare faded to the fog color with distance
« The background is unaffected

« For the best effect, make the background
the fog color

340
Adding fog

Syntax: Fog

« A Fog Node creates colored fog
« color - fog color
o fogType - LINEAR OF EXPONENTIAL
e VisibilityRange - maximum visibility limit

Fog {
color1.01.01.0

fogType "LINEAR"
visibilityRange 10.0
}

341
Adding fog
Several fog samples

==
[fogl.wrl | [fog2.wrl |
a. No fog b. Linear fog, visibility
range 30.0
{
=
[fog3.wrl] [fog5.wrl]
c. Exponential fog, c. Linear fog with a
visibility range 30.0 background

(don’t do this!)

342
Adding fog
Summary

« Fog has a color, a type, and a visibility range
« FOg can be used to set a mood, even indoors

« Fog limits the viewer’s sight:
« Reduces the amount of the world you have
to build
« Reduces the amount of the world that must
be drawn

343
Adding sound

Motivation

Creating sounds

Syntax: AudioClip

Syntax: MovieTexture

Selecting sound source types

Syntax: Sound

Syntax: Sound

Syntax: Sound

Setting the sound range

Creating triggered sounds

A sample using triggered sound

A sample using triggered sound

Creating continuous localized sounds

A sample using continuous localized sound
A sample using continuous localized sound
Creating continuous background sounds

Summary

344
Adding sound

Motivation

« Sounds can be triggered by viewer actions
o Clicks, horn honks, door latch noises

« Sounds can be continuous in the background
« Wind, crowd noises, elevator music

« Sounds emit from a location, in a direction,
within an area

345
Adding sound

Creating sounds

« Sounds have two components
« A sound sourceproviding a sound signal
o Like a stereo component

« A sound emitterconverts a signal to virtual
sound
o Like a stereo speaker

346
Adding sound

Syntax: AudioClip

« An AudioClip node creates a digital sound

source
« url - asound file URL
o pich - playback speed
« playback controls, like aTimeSensor node

Sound {
source AudioClip {
url "myfile.wav"
pitch 1.0
startTime 0.0
stopTime 0.0
loop FALSE

347
Adding sound

Syntax: MovieTexture

o A MovieTexture hode creates a movie sound

source
e url - a texture move file URL

« speed - playback speed
« playback controls, like aTimeSensor node

Sound {
source MovieTexture {
url "movie.mpg"
speed 1.0
startTime 0.0
stopTime 0.0
loop FALSE

348
Adding sound

Selecting sound source types

« Supported by theaudioclip node:
« WAV - digital sound files
« Good for sound effects

« MIDI - General MIDI musical
performance files
« MIDI files are good for background
music

« Supported by themovieTexture node:
« MPEG - movie file with sound
« Good for virtual TVs

349
Adding sound

Syntax: Sound

« A sound node describes a sound emitter
e source - AudioClip Or MovieTexture Nhode
e location anddirection - emitter placement

Sound {
source AudioClip{. ..}
location 0.0 0.0 0.0
direction 0.0 0.0 1.0

}

350
Adding sound

Syntax: Sound

e A sound node describes a sound emitter

e intensity - volume
e spatialize - USe spatialize processing
o priority - prioritize the sound
Sound {
iﬁténsity 1.0
spatialize TRUE
priority 0.0

}

351
Adding sound

Syntax: Sound

e A sound node describes a sound emitter
« minFront , minBack - Inner ellipsoid
« maxFront , maxBack - outer ellipsoid

Sound {

minFront 1.0
minBack 1.0
maxFront 10.0
maxBack 10.0

352
Adding sound

Setting the sound range

« The sound range fields specify twellipsoids
e minFront and minBack control an inner
ellipsoid
« maxFront and maxBack control an outer
ellipsoid

« Sound has a constant volume inside the inner
ellipsoid

« Sound drops to zero volume from the inner to
the outer ellipsoid

353
Adding sound

Creating triggered sounds

e AudioClip node:
e loop FALSE
e SetstartTime from a sensor node

e Sound nhode:
e Spatialize TRUE
e minFront etc. with small values
e priority 1.0

354
Adding sound

A sample using triggered sound

Group {
children [
Shape {
appearance Appearance {
material Material { diffuseColor 1.0 1.0 1.0

}
geometry Box { size 0.230.1 1.5}

DEF C4 TouchSensor { }
Sound {
source DEF PitchC4 AudioClip {
url "tonel.wav"
pitch 1.0

}
maxFront 100.0
maxBack 100.0

}
]

}
ROUTE C4.touchTime TO PitchC4.set_startTime

355
Adding sound

A sample using triggered sound

[Kod.wrl]

356
Adding sound

Creating continuous localized sounds

e AudioClip node:
e loop TRUE
e startTime 0.0 (default)
o stopTime 0.0 (default)

 Sound nhode:
e spatialize TRUE (default)
e minFront etc. with medium values
e priority 0.0 (default)

357
Adding sound

A sample using continuous localized sound

Sound {
source AudioClip {
url "willowl.wav"
loop TRUE
startTime 1.0
stopTime 0.0

minFront 5.0
minBack 5.0
maxFront 10.0
maxBack 10.0
}
Transform {
translation 0.0 -1.65 0.0
children [
Inline { url "sndmark.wrl" }

]
}

358
Adding sound

A sample using continuous localized sound

[ambient.wrl]

359
Adding sound

Creating continuous background sounds

e AudioClip node:
e loop TRUE
e startTime 0.0 (default)
o stopTime 0.0 (default)

e Sound hode:
e spatialize FALSE (default)
« minFront etc. with large values
e priority 0.0 (default)

360
Adding sound

Summary

« AN AudioClip nhode or amMovieTexture node
describe a sound source
« A URL gives the sound file
« Looping, start time, and stop time control
playback

A sound node describes a sound emitter
« A source node provides the sound
« Range fields describe the sound volume

361
Controlling the viewpoint

Motivation

Creating viewpoints

Syntax: Viewpoint

A sample using multiple viewpoints

Summary

362

Controlling the viewpoint

Motivation

By default, the viewer enters a world at (0.0,
0.0, 10.0)

« YOU can provide your own preferred view
points
« Select the entry point position
« Select favorite views for the viewer
« Name the views for a browser menu

363

Controlling the viewpoint

Creating viewpoints

« Viewpoints specify a desired location, an
orientation, and a camera field of view lens
angle

 Viewpoints can be transformed using a
Transform node

« The first viewpoint found in a file is the entry
point

364

Controlling the viewpoint

Syntax: Viewpoint

o A viewpoint node specifies a named viewing
location

e posion andorientation - viewing location
. fieldOfview - camera lens angle
e description - description for viewpoint
menu
Viewpoint {

position 0.00.0 10.0
orientation 0.0 0.0 1.0 0.0
fieldOfView 0.785
description "Entry View"

}

365

Controlling the viewpoint

A sample using multiple viewpoints

[windmill.wrl]

366

Controlling the viewpoint

Summary
« Specify favorite viewpoints inviewpoint nhodes

« The first viewpoint in the file is the entry
viewpoint

367
Controlling navigation

Motivation

Selecting navigation types
Specifying avatars
Controlling the headlight
Syntax: NavigationInfo

Summary

368

Controlling navigation

Motivation

. Different types of worlds require different
styles of navigation
« Walk through a dungeon
« Fly through a cloud world
« Examine shapes in a CAD application

« YOU can select the navigation type

« YOU can describe the size and speed of the
viewer’'s avatar

369

Controlling navigation

Selecting navigation types

« There are five standard navigation keywords:

« WALK- walk, pulled down by gravity

o FLY - fly, unaffected by gravity

« EXAMINE- examine an object at "arms
length"

« NONE- N0 navigation, movement controlled
by world not viewer!

« ANY - allows user to change navigation type

« SOome browsers support additional navigation
types

370

Controlling navigation

Specifying avatars

« Avatar size (width, height, step height) and
speed can be specified

371

Controlling navigation

Controlling the headlight

« By default, aheadlightis placed on the
avatar's head and aimed in the head direction

« YOu can turn this headlight on and off
« Most browsers provide a menu option to
control the headlight
« YOu can also control the headlight with the
Navigationinfo node

372

Controlling navigation

Syntax: Navigationinfo

o A Navigationinfo node selects the navigation
type and avatar characteristics
o type - Navigation style
e avatarSize and speed - avatar
characteristics
e headlight - headlight on or off

Navigationinfo {
type ["WALK", "ANY"]
avatarSize [0.25, 1.6, 0.75]
speed 1.0
headlight TRUE

}

373

Controlling navigation

Summary

« The navigation type specifies how a viewer
can move in a world
. walk, fly, examine, or none

« The avatar overall size and speed specify the
viewer’s avatar characteristics

374

375
Sensing the viewer

Motivation

Sensing the viewer

Using visibility and proximity sensors
Syntax: VisibilitySensor

Syntax: ProximitySensor

Syntax: ProximitySensor

Detecting viewer-shape collision
Creating collision groups

Syntax: Collision

A sample use of proximity sensors and collision groups
Optimizing collision detection

Using multiple sensors

Summary

Summary

Summary

376

Sensing the viewer

Motivation

« Sensing the viewer enables you to trigger
animations
« When a region is visible to the viewer
« When the viewer is within a region
« When the viewer collides with a shape

« The LoDand Billboard nodes are
special-purpose viewer sensors with built-in
responses

377

Sensing the viewer

Sensing the viewer

« There are three types of viewer sensors:
o A VisibilitySensor node senses if the
viewer can see a region

A ProximitySensor ~ node senses If the viewer
IS within a region

o A Collision node senses Iif the viewer has
collided with shapes

378

Sensing the viewer

Using visibility and proximity sensors

e VisibilitySensor and ProximitySensor nodes
sense a box-shaped region
o center - region center
e size - region dimensions

- Both nodes have similar outputs:
e enterTime - Sends time on visible or region

entry
e exitTime - Sends time on not visible or
region exit

o isActive - Sends true on entry, false on exit

379

Sensing the viewer

Syntax: VisibilitySensor

o A VisibilitySensor node senses Iif the viewer
sees or stops seeing a region
o center aNndsize - the region’s location and
size
e enterTime aNndexitTime - Sends time on
entry/exit
o isActive - sends true/false on entry/exit

DEF VisSense VisibilitySensor {
center 0.0 0.0 0.0
size 14.014.014.0

ROUTE VisSense.enterTime TO Clock.set_startTime

380

Sensing the viewer

Syntax: ProximitySensor

o A ProximitySensor node senses If the viewer
enters or leaves a region
o center aNndsize - the region’s location and
size
e enterTime aNndexitTime - Sends time on
entry/exit
o isActive - sends true/false on entry/exit

DEF ProxSense ProximitySensor {
center 0.0 0.0 0.0
size 14.014.014.0

ROUTE ProxSense.enterTime TO Clock.set_startTime

381

Sensing the viewer

Syntax: ProximitySensor

o A ProximitySensor ~ node senses the viewer
while in a region

e posion andorientation - sends position
and orientation while viewer is in the
region

DEF ProxSense ProximitySensor {. ..}

ROUTE ProxSense.position_changed TO PetRobotFollower.set

382

Sensing the viewer

Detecting viewer-shape collision

« A Collision grouping node senses shapes
within the group
« Detects if the viewer collides with any
shape in the group
« Automatically stops the viewer from going
through the shape

« Collision occurs when the viewer’s avatar gets
close to a shape
. Collision distance is controlled by the
avatar size in theNavigationinfo node

383

Sensing the viewer

Creating collision groups

« Collision checking isexpensiveso, check for
collision with a proxy shape instead
« Proxy shapes are typically extremely
simplified versions of the actual shapes
« Proxy shapes are never drawn

« A collision group with a proxy shape, but no
children, creates an invisible collidable shape
« Windows and invisible railings
o Invisible world limits

384

Sensing the viewer

Syntax: Collision

« A Collision grouping node senses If the
viewer collides with group shapes
o colide - enable/disable sensor
« proxy - SImple shape to sense instead of
children
o children - children to sense
o collideTime - sends time on collision

DEF Collide Collision {
collide TRUE
proxy Shape { geometry Box {...}}
children|[...]

}
ROUTE Collide.collideTime TO OuchSound.set_startTime

385

Sensing the viewer

A sample use of proximity sensors and collision
groups

386

Sensing the viewer

Optimizing collision detection

« Collision is on by default
o Turn it off whenever possible!

« However, once a parent turns off collision, a
child can’t turn it back on!

« Collision results from viewer colliding with a
shape, but not from a shape colliding with a
viewer

387

Sensing the viewer

Using multiple sensors
« Any number of sensors can sense at the same
time
« YOUu can have multiple visibility, proximity,
and collision sensors
« Sensor areas can overlap

o If multiple sensors should trigger, they do

388

Sensing the viewer

Summary

o A VisibilitySensor node checks if a region is
visible to the viewer
« The region is described by a center and a
size

« Time Is sent on entry and exit of visibility

 True/false is sent on entry and exit of
visibility

389

Sensing the viewer

Summary
o A ProximitySensor ~ node checks if the viewer Is
within a region
« The region is described by a center and a
size
« Time Is sent on viewer entry and exit

 True/false is sent on viewer entry and exit

« Position and orientation of the viewer Is
sent while within the sensed region

390

Sensing the viewer

Summary

« A Collision grouping node checks if the
viewer has run into a shape
« The shapes are defined by the group’s
children or a proxy

o Collision time Is sent on contact

391
Summary examples

A doorway
A mysterious temple
Depth-cueing using fog

A heads-up display

392

Summary examples

A doorway

o A set OfimageTexture nodes add marble
textures

o Lighting nodes create dramatic lighting

« A Fog node fades distant shapes

o A ProximitySensor ~ node controls animation

| doorway.wrl |

393

Summary examples

A mysterious temple

« A Background node creates a sky gradient

« A sound node creates a spatialized sound effect

o A set ofviewpoint nodes provide standard
views

[temple.wrl |

394

Summary examples

Depth-cueing using fog

« Multiple IndexedLineSet nodes create
wireframe isosurfaces

« A Fog node with black fog fades out distant
lines for depth-cueing

[isoline.wrl |

395

Summary examples

A heads-up display

o A ProximitySensor ~ node tracks the viewer and
moves a panel at each step

« The panel contains shapes and sensors to
control the content

396

397
Controlling detall

Motivation

Example

Creating multiple shape versions
Controlling level of detalil

Syntax: LOD

Choosing detail ranges
Optimizing a shape

A sample of detail levels

A sample LOD

A sample LOD

Summary

398

Controlling detail

Motivation

« The further the viewer can see, the more there
IS to draw

. If a shape Is distant:
« The shape is smaller
« The viewer can’t see as much detall
e SO... draw it with less detall

. Varying detail with distance reduces upfront
download time, and increases drawing speed

399

Controlling detail

Example

[prox1.wrl |

400

Controlling detail

Creating multiple shape versions

« To control detall, model thesame shape
several times
. high detall for when the viewer is close up
« medium detall for when the viewer Is
nearish
« low detall for when the viewer iIs distant

« Usually, two or three different versions is
enough, but you can have as many as you
want

401

Controlling detail

Controlling level of detall

« Group the shape versions akvelsin an LoD
grouping node
« LOD is short for Level of Detall
o List them from highest to lowest detall

402

Controlling detail

Syntax: LOD

« An LoDgrouping node creates a group of
shapes describing different levels (versions) of
the same shape

o center - the center of the shape
« range - a list of level switch ranges
o level - a list of shape levels

LOD {
center 0.0 0.0 0.0
range [...]

level [...]

}

403

Controlling detail

Choosing detall ranges

« Use a list of ranges for level switch points
o If you have 3 levels, you need 2 ranges
« Ranges arehints to the browser

range [5.0, 10.0]

shap
center

Viewer<=5.0 | Viewer<=10.0 | Viewer>10.0
Show 1stlevel | Show 2ndlevel | Show 3rd level

5.0 10.0

404

Controlling detail

Optimizing a shape

« Suggested procedure to make different levels
(versions):
« Make the high detail shape first
« Copy it to make a medium detall level
« Move the medium detail shape to a desired
switch distance
« Delete parts that aren’t dominant
« Repeat for a low detall level

« Lower detalil levels should use simpler
geometry, fewer textures, and no text

405

Controlling detail

A sample of detall levels

[torches3.wrl |

406

Controlling detail

A sample LOD

LOD {
center 0.0 0.0 0.0
range [7.0, 10.0]
level [
Inline { url "torch1.wrl" }
Inline { url "torch2.wrl" }
Inline { url "torch3.wrl" }

]
}

407

Controlling detail

A sample LOD

[torches.wrl]

408

Controlling detail

Summary

« Increase performance by making multiple
levels of shapes
« High detail for close up viewing
« Lower detail for more distant viewing

« Group the levels in anLobnode
« Ordered from high detail to low detalil
« Ranges to select switching distances

409
Introducing script use

Motivation

Syntax: Script

Defining the program script interface
Data types

Data types

A sample using a program script

A sample using a program script

Summary

410

Introducing script use

Motivation

« Many actions are too complex for animation
nodes
« Computed animation paths (eg. gravity)
« Algorithmic shapes (eg. fractals)
« Collaborative environments (eg. games)

« YOU can create new sensors, interpolators,
etc., using program scripts written in
. Java- powerful general-purpose language
« JavaScript- easy-to-learn language
« VRMLscript - same as JavaScript

411

Introducing script use

Syntax: Script

« A script node selects a program script to run:
o« url - choice of program script

DEF Bouncer Script {

url "bouncer.class"
or...

url "bouncer.js"
or...

url "javascript: ..."
or...

url "vrmilscript: ..."

}

412

Introducing script use

Defining the program script interface

« A script node also declares the program
script interface
o field , eventin , andeventout - INputs and
outputs
« Each has a name and data type
. Fields have an initial value

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventln SFFloat set_fraction
eventOut SFVec3f value changed

}

413

Introducing script use

Data types
Data type Meaning
SFBool Boolean, true or false value
SFColor , MFColor RGB color value
SFFloat , MFFloat Floating point value
SFimage Image value
SFInt32 , MFInt32 Integer value

SFNode, MFNode Node value

414

Introducing script use

Data types
Data type Meaning
SFRotation , MFRotation Rotation value
SFString , MFString Text string value
SFTime Time value
SFVec2f , MFVec2f XY floating point value

SFVec3f , MFVec3f XYZ floating point value

415

Introducing script use

A sample using a program script

DEF Clock TimeSensor {. . .}
DEF Ball Transform { ...}

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value_changed
url "vrmlscript: . . ."

}

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

416

Introducing script use

A sample using a program script

417

Introducing script use

Summary

« The script node selects a program script,
specified by a URL

« Program scripts have field and event interface
declarations, each with
. A data type
« A name
« An initial value (fields only)

418

419
Writing program scripts with JavaScript

Motivation

Declaring a program script interface
Initializing a program script
Shutting down a program script
Responding to events

Processing events in JavaScript
Accessing fields from JavaScript
Accessing eventOuts from JavaScript
A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

A sample JavaScript script

Building user interfaces

Building a toggle switch

Using a toggle switch
Using a toggle switch
Building a color selector
Using a color selector
Using a color selector

Summary

420

Writing program scripts with JavaScript

Motivation

« A program script implements thescript node
using values from the interface
« The script responds to inputs and sends
outputs

« A program script can be written in Java
JavaScript VRMLscript, and other languages
« JavaScript is easier to program
. Java is more powerful
« VRMLscript is essentially JavaScript

421

Writing program scripts with JavaScript

Declaring a program script interface

« For a JavaScript program script, typically
give the script in thescript node’surl field

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value_changed
url "javascript: . . ."

or...
url "vrmlscript: . . ."

}

422

Writing program scripts with JavaScript

Initializing a program script

« The optionalinitialize function is called
when the script is loaded

function initialize () {

-

o Initialization occurs when:
« the script node is created (typically when
the browser loads the world)

423

Writing program scripts with JavaScript

Shutting down a program script

« The optional shutdown function is called when
the script is unloaded

function shutdown () {

-

« Shutdown occurs when:
« the script node Is deleted
« the browser loads a new world

424

Writing program scripts with JavaScript

Responding to events

« An eventin functionmust be declared for each
eventin

« The eventlIn function is called each time an
event Is received, passing the event’s
. Value
o lime stamp

function set_fraction(value, timestamp) {

-

425

Writing program scripts with JavaScript

Processing events in JavaScript

o If multiple events arrive at once, then multiple
eventln functions are called

« The optional eventsProcessed function Is
called after all (or some) eventin functions
have been called

function eventsProcessed () {

-

426

Writing program scripts with JavaScript

Accessing fields from JavaScript

« Each interface field is a JavaScript variable
« Read a variable to access the field value
« Write a variable to change the field value

lastval = bounceHeight; // get field
bounceHeight = newval; // set field

427

Writing program scripts with JavaScript

Accessing eventOuts from JavaScript

« Each interface eventOut is a JavaScript
variable
« Read a variable to access the last eventOut
value
« Write a variable to send an event on the
eventOut

lastval = value_changed|0]; // get last event
value_changed[0] = newval; // send new event

428

Writing program scripts with JavaScript

A sample JavaScript script

« Create aBouncing ball interpolatorthat
computes a gravity-like vertical bouncing
motion from a fractional time input

« Nodes needed:
DEF Ball Transform {
children|[...]
iI)EF Clock TimeSensor {

} .
DEF Bouncer Script {

-

429

Writing program scripts with JavaScript

A sample JavaScript script

 Script fields needed:
« Bounce height

DEF Bouncer Script {
field SFFloat bounceHeight 3.0

L

430

Writing program scripts with JavaScript

A sample JavaScript script

o Inputs and outputs needed:
« Fractional time input
« Position value output

DEF Bouncer Script {

eventin SFFloat set_fraction
eventOut SFVec3f value_changed

431

Writing program scripts with JavaScript

A sample JavaScript script

« Initialization and shutdown actions needed:
« None - all work done in eventln function

432

Writing program scripts with JavaScript

A sample JavaScript script

« Event processing actions needed:
e set_fraction eventln function
« NO need foreventsProcessed function

DEF Bouncer Script {

url "vrmiscript:
function set_fraction(frac, tm) {

o
}

433

Writing program scripts with JavaScript

A sample JavaScript script

« Calculations needed:
« Compute new ball position
« Send new position event

« Use a ball position equation roughly based
upon Physics
« See comments in the VRML file for the
derivation of the equation

434

Writing program scripts with JavaScript

A sample JavaScript script

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value_changed

url "vrmilscript:
function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] =;
value_changed[2] = 0.0;
}ll

435

Writing program scripts with JavaScript

A sample JavaScript script

« Routes needed:
o Clock into script’s set_fraction
e SCIIpt’'S value_changed INto transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

436

Writing program scripts with JavaScript

A sample JavaScript script

DEF Ball Transform {
children [
Shape {
appearance Appearance {

material Material {
ambientintensity 0.5
diffuseColor 1.0 1.0 1.0
specularColor 0.7 0.7 0.7
shininess 0.4

}

texture ImageTexture { url "beach.jpg" }

textureTransform TextureTransform { scale 2.

geometry Sphere {}

]

}

DEF Clock TimeSensor {
cycleinterval 2.0
startTime 1.0
stopTime 0.0
loop TRUE

}

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value changed

url "vrmlscript:
function set_fraction(frac, tm) {
y = 4.0 * bounceHeight * frac * (1.0 - frac);
value_changed[0] = 0.0;
value_changed[1] = y;
value_changed[2] = 0.0;
}ll

ROUTE Clock.fraction_changed TO Bouncer.set_fraction

ROUTE Bouncer.value_changed TO Ball.set_translation

437

Writing program scripts with JavaScript

A sample JavaScript script

438

Writing program scripts with JavaScript

Building user interfaces

« Program scripts can be used to help create 3D
user interface widgets
« Toggle buttons
« Radio buttons
« Rotary dials
« Scrollbars
o Text prompts
« Debug message text

439

Writing program scripts with JavaScript

Building a toggle switch

« A toggle script turns on at 1st touch, off at
2nd
« A TouchSensor node can supply touch events

DEF Toggle Script {
field SFBool on TRUE
eventin SFBool set_active
eventOut SFBool on_changed

url "vrmlscript:
function set_active(b, ts) {
if (b == FALSE) return;
if (on == TRUE) on = FALSE;
else on = TRUE;
on_changed = on;
}II
}

440

Writing program scripts with JavaScript

Using a toggle switch

« Use the toggle switch to make a lamp turn on
and off

DEF LightSwitch TouchSensor { }
DEF LampLight SpotLight {. ..}
DEF Toggle Script{. ..}

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set on

441

Writing program scripts with JavaScript

Using a toggle switch

[lamp2a.wrl]

442

Writing program scripts with JavaScript

Building a color selector

. The lamp on and off, but the light bulb
doesn’t change color!

« A color selector script sends amn color on a
TRUEINpuUt, and anoff color on arFALSE input

DEF ColorSelector Script {
field SFColor onColor 1.01.01.0
field SFColor offColor 0.0 0.0 0.0
eventln SFBool set_selection
eventOut SFColor color_changed

url "vrmiscript:
function set_selection(b, ts) {
if (b == TRUE) color_changed = onColor;
else color_changed = offColor;
}Il
}

443

Writing program scripts with JavaScript

Using a color selector

« Use the color selector to change the lamp bulb

color

DEF LightSwitch TouchSensor { }

DEF LampLight SpotLight {. ..}

DEF BulbMaterial Material { . . . }

DEF Toggle Script{. ..}

DEF ColorSelector Script{. ..}

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set on

ROUTE Toggle.on_changed TO ColorSelector.set_selectio r
ROUTE ColorSelector.color_changed TO BulbMaterial.set_em i

444

Writing program scripts with JavaScript

Using a color selector

[lamp2.wrl]

445

Writing program scripts with JavaScript

Summary

e The initialize and shutdown functions are
called at load and unload

o An eventln function is called when an event is
recelved

« The eventsProcessed function is called after all
(or some) events have been received

« Functions can get field values and send event
outputs

446

447
Writing program scripts with Java

Motivation

Declaring a program script interface
Importing packages for the Java class
Creating the Java class

Initializing a program script
Shutting down a program script
Responding to events

Processing events in Java
Accessing fields from Java
Accessing eventOuts from Java

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script

A sample Java script
A sample Java script
A sample Java script

Summary

448

Writing program scripts with Java

Motivation

« Compared to JavaScript/VRMLscript, Java
enables:
« Better modularity
« Better data structures
« Potential for faster execution
« Access to the network

« For simple tasks, use JavaScript/VRMLscript
« For complex tasks, use Java

449

Writing program scripts with Java

Declaring a program script interface

« For a Java program script, give the class file
IN the script node’surl field
« A class file is a compiled Java program
script
DEF Bouncer Script {
field SFFloat bounceHeight 3.0

eventin SFFloat set_fraction
eventOut SFVec3f value_changed

url "bounce?2.class"

}

450

Writing program scripts with Java

Importing packages for the Java class

« The program script file must import the
VRML packages:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

451

Writing program scripts with Java

Creating the Java class

« The program script must define a public class
that extends thescript class

public class bounce2
extends Script

{
.

452

Writing program scripts with Java

Initializing a program script

« The optionalinitialize method is called when
the script is loaded

public void initialize () {

-

o Initialization occurs when:
« the script node is created (typically when
the browser loads the world)

453

Writing program scripts with Java

Shutting down a program script

« The optional shutdown method is called when
the script is unloaded

public void shutdown () {
}

« Shutdown occurs when:
« the script node Is deleted
« the browser loads a new world

454

Writing program scripts with Java

Responding to events

o The processevent method is called each time
an event is received, passing a&vent Object
containing the event’s

. Value
o lime stamp

public void processEvent(Event event) {

-

455

Writing program scripts with Java

Processing events in Java

o If multiple events arrive at once, then the
processEvent method is called multiple times

« The optional eventsProcessed method is called
after all (or some) events have been handled

public void eventsProcessed () {

-

456

Writing program scripts with Java

Accessing fields from Java

o Each interface field can be read and written
o Call getField to get a field object

obj = (SFFloat) getField("bounceHeight");

o Call getvalue to get a field value

lastval = obj.getValue();

o Call setvalue to set a field value

obj.setValue(newval);

457

Writing program scripts with Java

Accessing eventOuts from Java

« Each interface eventOut can be read and
written
« Call getEventout to get an eventOut object

obj = (SFVec3f) getEventOut("value _changed");

 Call getvalue to get the last event sent

lastval = obj.getValue();

o Call setvalue to send an event

obj.setValue(newval);

458

Writing program scripts with Java

A sample Java script

« Create aBouncing ball interpolatorthat
computes a gravity-like vertical bouncing
motion from a fractional time input

« Nodes needed:
DEF Ball Transform {
children|[...]
iI)EF Clock TimeSensor {

} .
DEF Bouncer Script {

-

459

Writing program scripts with Java

A sample Java script

« Give it the same interface as the JavaScript
example

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value_changed

url "bounce?2.class"

}

460
Writing program scripts with Java

A sample Java script

« Imports and class definition needed:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
extends Script

{
.

461

Writing program scripts with Java

A sample Java script

« Class variables needed:
« One for the bounceHeight field value
« One for thevalue_changed eventOut object

private float bounceHeight;
private SFVec3f value _changedObj;

462

Writing program scripts with Java

A sample Java script

o Initialization actions needed:
« Get the value of thebounceHeight field
« Get thevalue_changedobj eventOut object

public void initialize()

SFFloat obj = (SFFloat) getField("bounceHeight");
bounceHeight = (float) obj.getValue();
value_changedObj = (SFVec3f) getEventOut("value_cha

}

463

Writing program scripts with Java

A sample Java script

« Shutdown actions needed:
« None - all work done inprocessEvent
method

464

Writing program scripts with Java

A sample Java script

« Event processing actions needed:
e processEvent event method
« NO need foreventsProcessed ~ method

public void processEvent(Event event)

{
.

465

Writing program scripts with Java

A sample Java script

« Calculations needed:
« Compute new ball position
« Send new position event

466

Writing program scripts with Java

A sample Java script

public void processEvent(Event event)

{
ConstSFFloat flt = (ConstSFFloat) event.getValue();

float frac = (float) flt.getValue();
float y = (float)(4.0 * bounceHeight * frac * (1.0 - fra

float[] changed = new float[3];
changed[0] = (float) 0.0;

changed[1l] = y;

changed[2] = (float) 0.0;
value_changedObj.setValue(changed);

467

Writing program scripts with Java

A sample Java script

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2

{

extends Script

private float bounceHeight;
private SFVec3f value _changedObj;

public void initialize()

{
/| Get the fields and eventOut

SFFloat floatObj = (SFFloat) getField("bounceHeight
bounceHeight = (float) floatObj.getValue();

}

public void processEvent(Event event)

{
ConstSFFloat flt = (ConstSFFloat) event.getValue();

float frac = (float) flt.getValue();

value_changedObj = (SFVec3f) getEventOut("value_cha

float y = (float)(4.0 * bounceHeight * frac * (1.0 -

float[] changed = new float[3];
changed[0] = (float)0.0;

changed[1] =;

changed[2] = (float)0.0;

value _changedObj.setValue(changed);

468

Writing program scripts with Java

A sample Java script

« Routes needed:
o Clock into script’s set_fraction
e SCIIpt’'S value_changed INto transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

469

Writing program scripts with Java

A sample Java script

DEF Ball Transform {
children [
Shape {
appearance Appearance {

material Material {
ambientintensity 0.5
diffuseColor 1.0 1.0 1.0
specularColor 0.7 0.7 0.7
shininess 0.4

}

texture ImageTexture { url "beach.jpg" }

textureTransform TextureTransform { scale 2.

geometry Sphere {}

]

}

DEF Clock TimeSensor {
cycleinterval 2.0
startTime 1.0
stopTime 0.0
loop TRUE

}

DEF Bouncer Script {
field SFFloat bounceHeight 3.0
eventin SFFloat set_fraction
eventOut SFVec3f value changed

url "bounce?2.class"

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

470

Writing program scripts with Java

A sample Java script

471

Writing program scripts with Java

Summary

e The initialize and shutdown Mmethods are
called at load and unload

o The processevent method is called when an
event Is recelved

o The eventsProcessed method is called after all
(or some) events have been received

« Methods can get field values and send event
outputs

473
Creating new node types

Motivation

Syntax: PROTO

Defining prototype bodies
Syntax: IS

Syntax: IS

Using IS

Using prototyped nodes
Controlling usage rules
Controlling usage rules
A sample prototype use
A sample prototype use
A sample prototype use
A sample prototype use
A sample prototype use
Changing a prototype

A sample prototype use
Syntax: EXTERNPROTO

Summary

474

Creating new node types

Motivation

« YOU can create new node types that
encapsulate:
« Shapes
e SENSOIS
. Interpolators
e SCripts
. anything else . ..

« This creates high-level nodes
« Robots, menus, new shapes, etc.

475

Creating new node types

Syntax: PROTO

« A PROTCStatement declares a new node type (a
prototype)
« Name- the new node type name
. flelds and events- interface to the
prototype

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cycleinterval 1.0

N
.

476

Creating new node types

Defining prototype bodies

« PROTOAEfINES:
« body- nodes and routes for the new node

type

PROTO BouncingBall [
{

Transform {
children|[...]

LOUTE.”
}

477

Creating new node types

Syntax: IS

« The s syntax connects a prototype interface
field, eventln, or eventOut to the body
. Like an assignment statement
« Assigns interface field or eventin to body
« Assigns body eventOut to interface

478

Creating new node types

Syntax: IS

o Interface items connected bys need not have
the same name as an item in the body, but
often do

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cycleinterval 1.0

N

DEF Clock TimeSensor {
cyclelnterval IS cyclelnterval

-

479

Creating new node types

Using IS
May Is to. ..
Exposed
Interface Fields fields Eventlns EventOuts
Fields yes yes no no
Exposed fields no yes no no
Eventlns no yes yes no

EventOuts no yes no yes

480

Creating new node types

Using prototyped nodes

« The new node type can be used like any other
type

BouncingBall {
bounceHeight 3.0
cyclelnterval 2.0

}

481

Creating new node types

Controlling usage rules

« Recall that node use must be appropriate for
the context
« A shape node specifies shape, not color
« A Material node specifies color, not shape
A Box node specifies geometry, not shape or
color

482

Creating new node types

Controlling usage rules

« The context for a new node type depends upon
the first node in theproTADOdY

« For example, if the first node is ageometry
node
« The prototype creates a nevgeometry node

type

« The new node type can be used wherever the
first node of the prototype body can be used

483

Creating new node types

A sample prototype use

« Create aBouncingBall node type that:
« Builds a beachball

« Creates an animation clock
« Using arproTdfeld to select the cycle
Interval

« Bounces the beachball
 Using the bouncing ball program script
« Using aproTdield to select the bounce
height

484

Creating new node types

A sample prototype use

o Fields needed:
« Bounce height
« Cycle interval

PROTO BouncingBall [
field SFFloat bounceHeight 1.0
field SFTime cycleinterval 1.0

N
.

485

Creating new node types

A sample prototype use

o Inputs and outputs needed:
« NOne - aTimeSensor nhode Is built in to the
new node

486

Creating new node types

A sample prototype use

« Body needed:
« A ball shape inside a transform
« An animation clock
« A bouncing ball program script
« Routes connecting it all together

PROTO BouncingBall [

1
DEF Ball Transform {
children [

Shape{...}

}

DEF Clock TimeSensor{...}
DEF Bouncer Script{ ...}
ROUTE . ..

487

Creating new node types

A sample prototype use

488

Creating new node types

Changing a prototype

o If you change a prototype, all uses of that
prototype change as well
« Prototypes enable world modularity
« Large worlds make heavy use of prototypes

« For the BouncingBall prototype, adding a
shadow to the prototype makes all balls have a
shadow

489

Creating new node types

A sample prototype use

490

Creating new node types

Syntax: EXTERNPROTO

 Prototypes are typically in a separateexternal
file, referenced by anEXTERNPROTO
« Name fields, events- as frompPrROTQ MiNUS
Initial values
o url - the URL of the prototype file
« #Name- name ofproTan file

EXTERNPROTO BouncingBall [
field SFFloat bounceHeight
field SFTime cyclelnterval

] "bounce.wrl#BouncingBall"

491

Creating new node types

Summary

« PROTCOdEcClares a new node type and defines its
node body

« EXTERNPROTOECIares a new node type,
specified by URL

492

493
Providing information about your world

Motivation

Syntax: WorldInfo

494

Providing information about your world

Motivation
o After you've created a great world, sign it!

« YOU can provide a title and a description
embedded within the file

495

Providing information about your world

Syntax: WorldInfo

« A worldinfo node provides title and
description information for your world
o title - the name for your world
o info - any additional information

WorldInfo {

title "My Masterpiece"

info ["Copyright (c) 1997 Me."]
}

496

497
Summary examples

An animated switch

A vector node for vector fields
An animated texture plane node
A cutting plane node

An animated flame node

A torch node

498

Summary examples

An animated switch

« A switch node groups together a set of
elevation grids

« A Script node converts fractional times to
switch choices

[animgrd.wrl]

499

Summary examples

A vector node for vector fields

« A PROTCENCApsSulates a vector shape into a
Vector node

« That node is used multiple times to create a
vector field

[vecfld1l.wrl]

500

Summary examples

An animated texture plane node

« A script node selects a texture to map to a
face

« A PROTCENCApsulates the face shape, script,
and routes to create aexturePlane hode type

[texplane.wrl]

501

Summary examples

A cutting plane node

« A TexturePlane Node creates textured face

« A PlaneSensor node slides the textured face

« A PROTCENCapsulates the textured face, sensor,
and translator script to create aslidingPlane
node

| cutplane.wrl |

502

Summary examples

An animated flame node

« A script node cycles between flame textures
« A PROTCENCapsulates the flame shape, script,
and routes into arlames node

[match.wrl]

503

Summary examples

A torch node

« A Flame node creates animated flame

« An Lobnode selects among torches using the
flame

« A PROTCENCApsulates the torches into sorch
node

[columns.wrl]

504

505
Miscellaneous extensions

Working groups

Working groups

Using the binary file format

Using the binary file format

Using the external authoring interface
Using the external authoring interface

Using living worlds

506

Miscellaneous extensions

Working groups

« Several groups are working on VRML
extensions
o Color fidelity WG
« Compressed binary format WG
« Conformance WG
« Database WG
« External authoring interface WG
« Human animation WG

507

Miscellaneous extensions

Working groups

« And more...
« Keyboard input WG
o Living worlds WG
« Metaforms WG
« Object-oriented WG
« Universal media libraries WG
« Widgets WG

508

Miscellaneous extensions

Using the binary file format

« The binary file format enables smaller files
for faster download

« The binary file format includes
« Binary representation of nodes and fields
« Support for prototypes
« Geometry compression

509

Miscellaneous extensions

Using the binary file format

« Most authoring will be done with world
builders that output binary VRML files
directly

- Hand-authored text VRML will be compiled
to the binary format

« Converters back to text VRML will become
available
« Comments will be lost by translation
« Worldinfo nodes will be retained

510

Miscellaneous extensions

Using the external authoring interface

« Program scripts in ascript node areinternal
« Inside the world
« Connected by routes

« External program scripts can be written in
Java using theExternal Authoring Interface
(EAI)

« Outside the world, on an HTML page
« NO need to use routes!

511

Miscellaneous extensions

Using the external authoring interface

« A typical Web page contains:
« HTML text
« An embedded/RML browser plug-in
« A Java applet

« The EAIl enables the Java applet to "talk" to
the VRML browser

« The EAI is not part of the VRML standard
(yet), but it is widely supported
« Check your browser’s release notes for EAI
support

512

Miscellaneous extensions

Using living worlds

« Several extensions are in progress to create a
framework for multi-user living worlds
« Shared objects and spaces
« Piloted objects (like avatars)
« Common avatar descriptions

513
Conclusion

Coverage
Coverage
Where to find out more
Where to find out more

Introduction to VRML 97

514

Conclusion

Coverage

« This morning we covered:
« Building primitive shapes
« Building complex shapes
. Translating, rotating, and scaling shapes
« Controlling appearance
« Grouping shapes
« Animating transforms
. Interpolating values
« Sensing viewer actions

515

Conclusion

Coverage

 This afternoon we covered:
« Controlling texture
« Controlling shading
« Adding lights
« Adding backgrounds and fog
« Controlling detall
« Controlling viewing
« Adding sound
« Sensing the viewer
« Using and writing program scripts
« Building new node types

516

Conclusion

Where to find out more

« The VRML 2.0 specification
http://vag.vrml.org/VRML2.0/FINAL

« The VRML 97 specification
http://vrml.sgi.com/moving-worlds

« The VRML Repository
http://www.sdsc.edu/vrml

517

Conclusion

Where to find out more
« Shameless plug for my VRML book...

The VRML 2.0 Sourcebook

by Andrea L. Ames, David R. Nadeau, and
John L. Moreland

published by John Wiley & Sons

518

Conclusion

Introduction to VRML 97
Thanks for coming!
Dave Nadeau

San Diego Supercomputer Center
nadeau@sdsc.edu

